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1 Combinatorics

1.1 Board and Grid

Problem 1.1 (from AoPS). Let n > 1 be an integer. Let X = {1, 2, · · · , n2}. Let A ⊆ X
with |A| = n. Prove that the set difference X − A contains an arithmetic progression
with n terms.

Solution (of user 62861 from AoPS). Write the numbers 1, . . . , n2 in an n × n grid
in the usual way, with 1 in the top-left corner, n in the top-right corner, and n2 in the
bottom-right corner. If two of the n deleted numbers are in the same row or column,
at least one row or column is unaffected and its elements form an n-term arithmetic
progression.

Otherwise, one term is deleted from each row and column. Now, consider two adja-
cent rows: if the deleted element in the higher row is to the left of the deleted element
in the lower row, then these rows combined have n consecutive integers, forming an
arithmetic progression.

The only remaining case is when the deleted elements are n, 2n−1, 3n−2, . . . , n2−
n+1. In this case we can simply take n−1, 2n−2, . . . , n2−n as our n-term arithmetic
progression.

Problem 1.2 (from AoPS). Prove that there exists a constant c > 0 such that for every
integer n the following holds: you can take at least cn

5
3 lattice points in n× n grid such

that no four of them make a square with sides parallel to the coordinate axes.

Solution (of user Think1234 from AoPS). We will select points with probability p,
then delete some points so that we delete every square formed.

The expected number of points we select is n2p and it is easy to check that the
number of squares is N = 12 + 22 + · · ·+ (n− 1)2 = n(n−1)(2n−1)

6
. Now consider one fixed

square. The probability that it has all 4 vertices selected is p4. Using the linearity of
expectation we get that the expected number of squares is Np4. Thus we may consider
a selection of points with at most Np4 points. Remove one point from each square, so
we are left with at least f(p) = n2p − Np4 points. Now, since 1

3
n3 > N , we have at

least f(p) = n2p − 1
3
n3p4 points and by plugging p = n− 1

3 we are left with at least 2
3
n

5
3

points.

Problem 1.3 (All-Soviet olympiad in Riga 1971, from [6]). A cube with side length n
is divided into n3 unit cubes. What is the minimal number of these unit cubes, the lines
through which parallel to the sides intersect all n3 unit cubes?

Solution (from the same source). Answer:
⌈
n2

2

⌉
.

We will call the great cube the 3D board and each unit cube a cell. We need to place
several rooks in some cells to beat all n3 cells. We import Cartesian coordinate system
Ox1x2x3 and assume that the board is placed so that one of its vertices coincides with
the origin O and its faces are parallel to the axes.

Examples of optimal arrangements are shown in Figure 1.1 separately for even and
odd n. The face of the board corresponding to x1x2 is displayed, and the numbers in the
squares show the height of the rook above them.

3
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Figure 1: Examples of optimal arrangements for n = 10 (left) and n = 9 (right)

Now we prove the bound. We will call a layer any set of n2 cubes whose centers lie
in a plane perpendicular to a coordinate axis. Intersection of two layers will be called a
row.

Suppose that M rooks are arranged so that they beat all the cells of the board.
Choose a layer S with the minimal number m of rooks in it. We may assume that S is
parallel to x1x2. Let these m rooks beat m1 rows parallel to x1 and m2 rows parallel to
x2. WLOG m1 ≥ m2. Of course m ≥ m1. Then these rooks leave (n−m1)(n−m2) cells
unbeaten which should be beaten in the direction of x3.

Now consider all the n layers perpendicular to x2. The n − m1 such layers which
do not contain rooks of S should contain at least (n −m1)(n −m2) rooks. Each of the
remaining m1 layers has at least m rooks (according to the choice of m). Then

M ≥ (n−m1)(n−m2) +mm1 ≥ (n−m1)
2 +m2

1.

It is easy to check that the minimum of RHS is attained for m1 =

⌈
n2

2

⌉
.

Remark 1.3.1 (from the same source). This problem is equivalent to IMO 1971 problem
6:

Let A = (aij), where i, j = 1, 2, . . . , n, be a n × n board with all aij non-negative
integers. For each i, j such that aij = 0, the sum of the elements in the ith row and the
jth column is at least n. Then the sum of all the elements in the board is at least n2

2
.

Problem 1.4 (Ankan Bhattacharya, ELMO 2020 P5, from AoPS). Let m and n be
positive integers. Find the smallest positive integer s for which there exists an m × n
rectangular array of positive integers such that

• each row contains n distinct consecutive integers in some order,

• each column contains m distinct consecutive integers in some order, and

• each entry is less than or equal to s.

4
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Solution (from the posts of users ihatemath123 and 62861 on AoPS). The answer
is m + n − gcd(m,n) attained by breaking the board into gcd(m,n) × gcd(m,n) Latin
squares. An example for (6, 9) is shown below:
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Now we prove the bound. Let P (x) =
∑
c cell

xc. Then P (x) is divisible by both

1 + · · · + xm−1 (sum by columns) and 1 + · · · + xn−1 (sum by rows), so (x − 1)P (x) is
divisible by both xm − 1 and xn − 1.

Thus (x− 1)P (x) is divisible by their LCM
(xm − 1)(xn − 1)

xgcd(m,n)−1
and also divisible by x

(all numbers are positive). It follows that the largest number in the table, which equals
degP , is at least m+ n− gcd(m,n).

Problem 1.5 (from AoPS). A n × n × n Rubik cube is made up of n3 unit cubes. In
each of the unit cubes we write a distinct integer. Prove that there are two adjacent
cubes which contain numbers a, b such that, |a − b| ≥ n2 + n + 1. Note that two cubes
are adjacent if they share a vertex.

Solution (of user quantan13 from AoPS). Consider the cubes with number n3 and 1
respectively. Its easy to check that there is a path of adjacent cubes between them with
length ≤ n− 1. Thus by PHP, there are 2 adjacent cubes in that path whose difference

is ≥ n3 − 1

n− 1
= n2 + n+ 1, as desired.

Problem 1.6 (from AoPS). In a n × n matrix the numbers 1, 2, . . . , n each appear
exactly n times. Show that there exists at least a row or a column with at least

√
n

distinct numbers.

Solution (of user onyqz from AoPS). Denote by Ci and Ri the number of columns and
rows, in which the number i appears, respectively. Note that Ci · Ri ≥ n, since all n
appearances of i are contained in a rectangle of size Ci · Ri. Then from AM-GM it also
follows that Ci +Ri ≥ 2

√
Ci ·Ri ≥ 2

√
n. Let S be a uniformly random element from the

set of rows and columns and denote by X =
n∑

i=1

Xi the number of distinct integers in S,

where Xi is the indicator variable for element i ∈ S, 1 ≤ i ≤ n. Then

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

P[i ∈ S] =
n∑

i=1

Ci +Ri

2n
≥

n∑
i=1

√
Ci ·Ri

2n
≥

√
n

from which it follows that there exists some row or column with ≥
√
n distinct numbers.

5
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Problem 1.7 (from AoPS). A (2m+1)×(2n+1) grid is colored with two colors. A 1×1
square is called row-dominant if there are at least n + 1 squares of its color in its row.
Define column-dominant squares analogously. Prove that there are at least m + n + 1
squares that are both column-dominant and row-dominant.

Solution (of user Seicchi28 from AoPS). Let A, B be the set of row-dominant and
column-dominant squares, respectively. Observe that |A| ≥ (n + 1)(2m + 1), and |B| ≥
(m+ 1)(2n+ 1). Therefore

|A∩B| = |A|+|B|−|A∪B| ≥ (n+1)(2m+1)+(m+1)(2n+1)−(2m+1)(2n+1) = m+n+1.

1.2 Sets

Problem 1.8 (from AoPS). Suppose m ∈ Z>1. Find the maximum possible positive
integer k for which there exists k pairwise distinct non-empty subsets A1, A2, · · · , Ak of
M = {1, 2, · · · ,m}, such that for any 1 ≤ i < j ≤ k,

|Ai| /∈ Aj, |Aj| /∈ Ai.

Solution (from AoPS). Answer:
(
m− 1

⌈m−1
2

⌉

)
.

Let A := A1 ∪ · · · ∪ Ak and M \ A = {i1, . . . , il}. Then for any i ∈ A no Aj exists
with |Aj| = i. Hence

k ≤
(
|A|
i1

)
+ · · ·+

(
|A|
il

)
=

l∑
j=1

(
m− l

ij

)
.

Note that for fixed l the last sum is maximized when i1, . . . , il are the middle l numbers
of the array 1, . . . ,m− l. Thus we need to maximize

f(l) :=

l
2
−1∑

j=− l
2

(
m− l

⌈m−l
2

+ j⌉

)
.

Using
(
n+1
k

)
=
(
n
k

)
+
(

n
k−1

)
or inspecting Pascal’s triangle we see that f(l) ≥ f(l+1) holds

for any 1 ≤ l ≤ m− 2. Hence

k ≤ f(l) ≤ f(1) =

(
m− 1

⌈m−1
2

⌉

)
.

This bound is achieved when the sets A1, . . . , Ak are all the ⌈m−1
2

⌉-element subsets of
M \ {⌈m−1

2
⌉}.

Problem 1.9 (from the problems of A. Balitskiy’s course From Combinatorics to Ge-
ometry). Given a rectangle of n− r rows and n columns such that each of the numbers
1, 2, . . . , n occurs once in every row and no number occurs twice in any column, then
there exist r rows which may be added to the given rectangle to form a Latin square.

Note: a Latin square is an n×n array filled with n different symbols, each occurring
exactly once in each row and exactly once in each column.

6
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Solution (from [2]). Let Ci, i = 1, 2, . . . , n be the subset of the numbers 1, 2, . . . , n which
do not occur in the ith column of the given rectangle. Then each Ci contains r numbers
and each number occurs r times in all the C’s. For there are n − r numbers in the ith
column and each number has appeared in n−r columns. It will be shown that the subsets
satisfy the requirements of P. Hall’s theorem:

In order that a complete system of distinct representatives of subsets T1, . . . , Tm of
a set S shall exist, it is sufficient that for each k = 1, . . . ,m any selection of k of the
subsets shall contain between them at least k elements of S.

The necessity of these requirements is evident. Let us apply this theorem to the
subsets Ci. Any selection of k C’s will contain kr numbers and at least k of these must
be distinct since each number is contained in only r C’s. The distinct representatives
c1, . . . , cn of the subsets C1, . . . , Cn may be added as a row to the given rectangle. For
c1, . . . , cn must contain each of the numbers 1, . . . , n once and no ci has appeared in the
ith column of the given n−r rows. Repeatedly applying this process, we continue adding
rows to the rectangle until it becomes a complete Latin square.

Problem 1.10 (China Second Round 2015 (A) Q2, from AoPS). Let S = {A1, A2, . . . , An},
where A1, A2, . . . , An are n pairwise distinct finite sets (n ≥ 2), such that for any

Ai, Aj ∈ S, Ai ∪ Aj ∈ S. If k = min
1≤i≤n

|Ai| ≥ 2, prove that there exist x ∈
n⋃

i=1

Ai,

such that x is in at least
n

k
of the sets A1, A2, . . . , An.

Solution (of user EthanWYX2009 from AoPS). Let |A1| = k. Let there be s sets in
A1, A2, . . . , An that are disjoint from A1, denoted as B1, B2, . . . , Bs, t sets in A1, A2, . . . , An

that contain A1, and the remaining n− s− t sets have non-empty intersections with A1.
By the condition, B1 ∪ A1, B2 ∪ A1, . . . , Bs ∪ A1 are different sets containing A1 in S, so
t ≥ s. Hence, the number of times an element in A1 appears in A1, A2, . . . , An is at least

tk + (n− s− t) ≥ n+ (k − 2)t ≥ n.

Now by pigeonhole principle there exists an element in A1 that appears at least in
n

k
sets

of S.

Problem 1.11 (APMO 2013, Problem 4, from AoPS). Let a and b be positive integers,
and let A and B be finite sets of integers satisfying

(i) A and B are disjoint;

(ii) if an integer i belongs to either to A or to B, then either i+ a belongs to A or i− b
belongs to B.

Prove that a |A| = b |B|.

Solution (of user math154 from AoPS). After A ∪ B = (A − a) ∪ (B + b), we can
also write the generating function A(x) + B(x) = x−aA(x) + xbB(x). We can finish by

differentiating at 1, or equivalently, plugging 1 into
xa − 1

xa(x− 1)
A(x) =

xb − 1

x− 1
B(x).

7
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Problem 1.12 (2021 China Second Round Olympiad(A) P4, from AoPS). Find the
minimum value of c such that for any positive integer n ≥ 4 and any set A ⊆ {1, 2, · · · , n},
if |A| > cn, there exists a function f : A → {1,−1} satisfying∣∣∣∣∣∑

a∈A

a · f(a)

∣∣∣∣∣ ≤ 1.

Solution (of user luosw from AoPS).

Lemma 1.12.1. For b1, b2, · · · , bk ∈ N, if
k∑

i=1

bi < 2k, then for each i = 1, 2, · · · , k, there

exists εi ∈ {1,−1}, so that
∣∣∣∣ k∑
i=1

εibi

∣∣∣∣ ≤ 1.

Proof. For k = 1, 2, lemma is true. If k ≥ 3, then we consider these n − 1 numbers:
b2, b3, · · · , bk − b1 (we sort them so that b1 ≤ b2 ≤ · · · ≤ bk).

Considering A = {1, 4, 5, 6}, n = 6, there does not exist a function f so that∣∣∣∣∑
a∈A

f(a) · a
∣∣∣∣ ≤ 1. So c ≥ 2

3
. If c =

2

3
, A = {a1, a2, · · · , ak}, k > cn =

2

3
n, then 3k > 2n.

Sort A so that a1 < a2 < · · · < ak. If k is even, let b1 = a2 − a1, b2 = a4 − a3, · · · , b k
2
=

ak−ak−1. Consider
k
2∑

i=1

bi ≤ n− k
2
< k. By lemma, there exists a function f satisfying the

problem condition. If k is odd, let b1 = a1, b2 = a3 − a1, · · · , b k+1
2

= ak − ak−1. Consider
k
2∑

i=1

bi ≤ n− k+1
2

< k+1. Again, by lemma there exists a function f satisfying the problem

condition.

Problem 1.13 (2021 China Girls Math Olympiad, from AoPS). Given a finite set S,
P (S) denotes the set of all the subsets of S. For any f : P (S) → R prove the following
inequality: ∑

A∈P (S)

∑
B∈P (S)

f(A)f(B)2|A∩B| ≥ 0.

Solution (of user Tintarn from AoPS).

∑
A,B,C:C⊂A∩B

f(A)f(B) =
∑
C

∑
A,B:C⊂A,C⊂B

f(A)f(B) =
∑
C

( ∑
A:C⊂A

f(A)

)2

≥ 0.

1.3 Geometry

Problem 1.14 (Nikola Petrović, Serbia MO 2019, from AoPS). On the spherical planet
X there are 2n gas stations. Each station is paired with a gas station located at the
diametrically opposite point on the planet. Each station has a fixed (non-replenishable)
amount of gas. The arrangements of stations and the amounts of gas at each station are

8
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such that it is possible for a car with an empty (and large enough) reservoir to start from
any station and reach its paired station (filling up its reservoir with any gas it encounters
along the way). For which n does it follow that it is possible for the car to start from
some gas station and visit all the other gas stations on the planet. Assume that the car
consumes a fixed amount of gas per unit length.

Solution (from AoPS). The answer is n ≤ 3.
The station diametrically opposite to station X will be denoted by X ′. For n ≤ 1

everything is trivial. Let n = 2 and let AB = A′B′ be the smallest among all the distances
between two stations. You can get from station A to A′, for example, via AB′A′. But
there is enough gas in B to drive to the nearest station A, so the road BAB′A′ is possible.

Consider the case n = 3 and the six stations A,A′, B,B′, C, C ′. Let AB = A′B′ be
the smallest distance between the two stations and let the station B be the closest to C.
Denote S = {A,B,C} and S ′ = {A′, B′, C ′}. Starting from each station of one set we
can reach to the other set.

(1) Suppose that it is impossible to reach from station A to the set S ′ via AB. Then we
cannot get to S ′ via AC too, otherwise we could also via ABC, because BC ≤ AC,
and there is enough gas in B to compensate for the consumption on the route AB.
Therefore, starting from A we can only get to S ′ directly. The closest point of the
set S ′ is C ′, so the entire path CBAC ′B′A′ is possible.

A

A′

B

C

B′

C ′

(2) If the case (1) does not apply, go from A straight to B. Since the set S ′ is in our
range, and BC ≤ d(B, S ′) = BC ′, we can extend from B to C. There we will
replenish the gas consumed on the road BC, and since d(C, S ′) = CA′ < d(B, S ′),
we will be able to reach S ′, more precisely to the station A′. Further we can go to
B′, and from there to C ′. We get the path ABCA′B′C ′.

It remains to construct a counterexample for n ≥ 4. We may assume that half the
length of a big circle of the sphere is 1. Arrange the stations A2, A3, . . . , An on a big circle
so that A2A3 = A3A4 = · · · = An−1An = d < 1

n−1
and the station A1 so that A1A3 = d

and A1A2 = A1A4. Again, denote S = {A1, . . . , An} and S ′ = {A′
1, . . . , A

′
n}. We supply

the stations A1, A
′
1, . . . , An−1, A

′
n−1 with gas sufficient to cover the distance d, and the

stations An and A′
n with gas to cover the distance 1− (n− 1)d.

From each station it is possible to reach the diametrically opposite one: indeed, for
2 ≤ i ≤ n the path AiAi+1 . . . AnA

′
2A

′
3 . . . A

′
i is possible, and the path A1A3A4 . . . AnA

′
2A

′
3A

′
1

is also possible. On the other hand, in each of the stations A1, . . . , An−1 there is just
enough gas to get to the nearest station, and in An and A′

n just enough to go to the sec-
ond set. Therefore, in order to visit all the stations, at least one of the sets, say S, would
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A′
3 A3A′

1

A1

A2

A′
2 A4

A′
4

An

A′
n

have to be visited completely without using fuel in An, but for that it is necessary to
travel longer than (n−1)d, and there is only fuel enough for a path of length (n−1)d.

Problem 1.15 (Pranjal Srivastava, Indian National Mathematical Olympiad 2023, from
AoPS). Euler marks n different points in the Euclidean plane. For each pair of marked
points, Gauss writes down the number ⌊log2 d⌋ where d is the distance between the two
points. Prove that Gauss writes down less than 2n distinct values.

Solution (from AoPS). We first prove that Gauss writes down at most n even numbers.
For each even number 2k that Gauss writes down choose a single pair of points whose
distance lies between 22k and 22k+1. Connect these points with an edge. We claim
there cannot be a cycle: indeed, if the edges corresponding to the distinct even integers
2k1, . . . , 2km, 2km+1 form a cycle in that order, then the sum of distances for the first m
edges is at most

22k1+1 + · · ·+ 22km+1 ≤ 22km+1(1 + 2−2 + 2−4 + · · · ) ≤ 22km+1

1− 1
22

< 22km+2 ≤ 22km+1 ,

i.e. less than the distance corresponding to the last edge: a contradiction with triangle’s
inequality. So there are at most n− 1 edges.

This implies that Gauss only writes at most n − 1 even numbers, and similarly at
most n− 1 odd numbers. Thus, Gauss writes down at most 2n− 2 numbers in total.

Problem 1.16 (from AoPS). For a plane with 2025 points, prove that we can choose 45
such that all the triangles formed between these points are obtuse.

Solution (using the hint of user R8kt on AoPS). Import such a Cartesian system that
all the 2025 points Pi = (xi, yi) have distinct x-coordinates x1 < · · · < x2025. Then
by Erdős-Szekeres’s theorem among the y-coordinates y1, . . . , y2025 there is a monotonic
subsequence yi1 , . . . , yi45 . Then for any i, j, k ∈ {i1, . . . , i45} with i < j < k the triangle
PiPjPk has an obtuse angle at Pj.

1.4 Algorithms

Problem 1.17 (Walther Janous, Austrian MO 2024, Final Round P5, from AoPS). Let n
be a positive integer and let z1, z2, . . . , zn be positive integers such that for j = 1, 2, . . . , n
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the inequalities zj ≤ j hold and z1+z2+ · · ·+zn is even. Prove that the number 0 occurs
among the values

z1 ± z2 ± · · · ± zn,

where + or − can be chosen independently for each operation.

Solution (of user dgrozev from AoPS). We do it by induction on n. Consider zn−1 and
zn. If they are equal, we cancel them (by taking them with different signs) and proceed
with the first n− 2 numbers. If zn−1 < zn we take zn−1 with different sign as zn (though
the sign of the zn is still undetermined). This, virtually results in cancelling zn−1. After
that we move the number zn−zn−1 in n−1-th position and proceed further. If zn < zn−1

we "cancel" zn and proceed with zn−1 − zn on the (n− 1)-th position.

Remark 1.17.1 (from the same source). This could be made a constructive algorithm
actually.

1.5 Logic

Problem 1.18 (from YouTube, from StackExchange). 10 humans are abducted by aliens.
The aliens give each abductee either a purple hat or a green hat. The 10 are lined up in
a single file line, each facing forward, such that the last person can see the remaining 9’s
hats, the second to last person can see the remaining 8’s hats and so on. No one can see
his or her own hat.

The aliens then proceed, starting from the last person, to ask each of the abductees
what the color of their hat is. If the guess is correct, that human survives; else the
opposite happens.

Assuming the abductees are given a chance to develop a strategy before they are
lined up and questioned: what is the optimal strategy they can utilize (i.e. the one with
the highest expected number of survivals)?

During the questioning, the abductees are not allowed to say anything besides their
guess for the color of their hat when it is their turn.

Solution (of user Ice-9 from StackExchange). Answer: The optimal strategy will always
ensure 9 survivals, and will have a 50% chance of the 10th survival.

The first guy would count the number of hats before him of a particular color, for
example purple. If the count of purple hats is odd, then he would say that his hat is
purple; otherwise he would say that it is green. So the next guy should then be able to
determine the color of his hat by counting parity of the remaining purple hats. And so
do the remaining guys.

But the first guy has no way of knowing his own hat color, so he has got a 50/50
chance of dying either way.

1.6 Graphs

Problem 1.19 (from AoPS). Given n cubic polynomials such that each polynomial has
three distinct roots. Let S be the set of roots of the equation P1(x) · P2(x) · · ·Pn(x) = 0.
It is known that for 1 ≤ i < j ≤ n, Pi(x)Pj(x) has exactly 5 distinct roots.
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(a) Prove that if for every distinct elements a, b ∈ S, there exists a unique index i ∈
1, 2, . . . , n such that Pi(a) = Pi(b) = 0 then n = 7.

(b) Prove that if n > 7, then |S| = 2n+ 1.

Solution (from AoPS). First, we reformulate the problem into a hypergraph setting:
Let H = (S, E) be a 3-uniform hypergraph so that |E| = n and for any distinct

E1, E2 ∈ E holds |E1 ∩ E2| = 1.

(a) Prove that if for every distinct a, b ∈ S there exists a unique hyperedge E ∈ E with
a, b ∈ E, then n = 7.

(b) Prove that if n > 7 then |S| = 2n+ 1.

(a) Double count the number of pairs (E1, E2) for distinct hyperedges E1, E2 ∈ E to

get
(
n

2

)
=
∑
v∈S

(
deg v

2

)
(since for each vertex v ∈ S there are

(
deg v

2

)
pairs of

hyperedges intersecting through it). Then, double count the number of pairs (v, E)

where v ∈ S and v ∈ E ∈ E to get
∑
v∈S

deg v = 3n.

On the other hand, double counting the number of pairs ({u, v}, E) where u, v ∈ S

and u, v ∈ E ∈ E we obtain
(
|S|
2

)
= 3n (since for each pair of distinct vertices

u, v ∈ S there is a unique hyperedge through u, v). It follows that
∑
v∈S

deg v = 3n =(
|S|
2

)
so for the vertex w ∈ S of maximum degree holds degw ≥ 1

|S|

(
|S|
2

)
=

|S| − 1

2
. However, since any two hyperedges have intersection exactly one, for any

distinct E1, E2 ∈ E passing through w the two-element sets E1 \ {w} and E2 \ {w}
are disjoint. Thus, if E1, . . . , Em are the edges through w where m = degw then S
contains the disjoint union

{w} ⊔ (E1 \ {w}) ⊔ · · · ⊔ (Em \ {w})

whence |S| ≥ 1+2m ≥ 1+2 · |S| − 1

2
= |S|. This means that the maximum vertex

degree is degw =
|S| − 1

2
. But the sum of all vertex degrees was |S| · |S| − 1

2
so all

the vertex degrees should be equal. Thus(
1
3

(|S|
2

)
2

)
=

(
n

2

)
=
∑
v∈S

(
deg v

2

)
= |S|

( |S|−1
2

2

)
or

|S|(|S| − 1)(|S|+ 2)(|S| − 3)

72
=

|S|(|S| − 1)(|S| − 3)

8

which means that |S|+ 2 = 9 or |S| = 7. At last, n =
1

3

(
|S|
2

)
= 7 as desired.
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(b) We will show that for n > 7 all the vertex degrees except one are exactly one.
Suppose otherwise, that there exist two distinct vertices each of degree at least 2.
They may either be in an edge or not be in an edge.

Suppose they are in an edge. Let these vertices be u0, v0 and {u0, v0, w1} be the edge
containing them (see the left figure). Consider the second edges through u0 and v0.
Let them intersect at w0. Let these edges be {u0, v1, w0} and {u1, v0, w0}. Consider
any other edge E of the hypergraph. It should intersect the above three. This is only
possible when E is either {u1, v1, w1} or E contains a pair from {u0, u1}, {v0, v1} or
{w0, w1} (note that these last possible three edges should have a common vertex).
In total we can have only up to 7 edges, contradiction.

Now suppose that the two vertices of degree at least two do not belong to the same
edge. Call these vertices u0 and u1. Let {u0, v0, w0} and {u0, v1, w1} be the edges
through u0 (see the right figure). The edges E1, E2 coming out of u1 should intersect
each edge coming out of u0 but they may not contain u0 and should intersect only
in u1. This is possible only when (E1 \ {u1}) ⊔ (E2 \ {u1}) = {v0, v1, w0, w1}.
Moreover, neither {v0, w0} nor {v1, w1} may be subsets of E1 or E2. Thus WLOG
E1 = {u1, v1, w0} and E2 = {u1, v0, w1}. Any new edge should contain a pair
from {u0, u1}, {v0, v1} and {w0, w1}. Moreover such edges should have a common
vertex o different from the first six. Thus in total there may be only up to 7 edges,
contradiction (we could even note that the edge {u0, u1, o} is forbidden in our case
so there may be only up to 6 edges).

Thus all the vertices but one of the hypergraph should be of degree one. The degree
of the remaining vertex v will be deg v = 3n−

∑
u∈S\{v}

deg u = 3n− |S|+ 1. On the

other hand, (
n

2

)
=
∑
u∈S

(
deg u

2

)
=

(
deg v

2

)
since the remaining summands are zero. Hence n = deg v = 3n − |S| + 1 or
|S| = 2n+ 1 as desired.

Remark 1.19.1. One may note that the constructions in the second and third paragraphs
of (b) coincide and are the only possible example of the hypergraph sufficing the conditions
of part (a).

Problem 1.20 (from AoPS). Let A1, . . . , Am be subsets of [n] := {1, . . . , n} such that
|Ai ∩ Aj| = 1 for every i ̸= j. Prove that m ≤ n.

Solution (from AoPS). We view the sets Ai as the edges of a hypergraph H with vertex
set S := [n]. Categorize the following cases:

i. deg v = 1 for some v ∈ S. Then we may safely remove v from the hypergraph
(without removing any edge Ai ∋ v).

ii. There is a one element set Ai = {v}. Then all the other Aj, j ̸= i should intersect
through v. This means that S = {v} ⊔ (A1 \ {v}) ⊔ · · · ⊔ (Am \ {v}) whence
n = |S| = 1 + (|A1| − 1) + · · · + (|Am| − 1) ≥ m since |Ai| = 1 and |Aj| ≥ 2 for
j ̸= i.
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Thus we may assume that deg v ≥ 2 for each v ∈ S and |Ai| ≥ 2 for each i ∈ [m].
Now induct on |S| = n. The base n = 1 is trivial so suppose n > 1. Note that there

is a cycle in H. Indeed, take any vertex v1 ∈ S and an edge Ai1 ∋ v1. We have |Ai1| ≥ 2 so
this edge contains a vertex v2 ̸= v1. deg v2 ≥ 2 so there is another edge Ai2 ̸= Ai1 through
v2. Continue constructing vj and Aij in a similar manner. Consider the minimal j > 1
such that vj = vk for some 1 ≤ k < j. Then we obtain a cycle vk, Aik , vk+1, . . . , vj, Aij , vk
of length l = |j − k| > 1.

Remove the vertices vk, . . . , vj from H, as well as remove the edges Aik , . . . , Aij .
Then H decomposes (possibly) into connected components H1, . . . , Ht. Clearly each such
component has at most n − l < n − 1 vertices. Moreover, in each component each
two edges have intersection one. Thus we may apply the induction hypothesis to these
components: if V (Hi) is the vertex set of Hi and E(Hi) is its edge set then

n− l =
t∑

i=1

|V (Hi)| ≥
t∑

i=1

|E(Hi)| = m− l

or n ≥ m as desired.

1.7 Other Problems

Problem 1.21 (from AoPS). A chess tournament is followed by more than one male
participant and more than one female participant. Every pair of contestants played just
once and no game ended with a tie. In the end of the tournament, it is known that for
every participant, the number of male participants that were beaten by him/her is same
with the number of female participants that were beaten by him/her. Determine the
minimum participants from that tournament.

Solution (of user lbh_qys from AoPS). Suppose there are a males and b females.
Consider all the males: the total number of males they defeat is equal to the total number
of females they defeat. The number of males they defeat is the number of matches between
males, which is a(a−1)

2
, while the number of females they defeat is the number of matches

between males and females where the males win. Similarly, b(b−1)
2

equals the number of
matches between males and females where the females win. This implies that:

a(a− 1)

2
+

b(b− 1)

2
= ab

Simplifying this equation, we obtain:

(a− b)2 = a+ b

This shows that the total number of people, a + b, is a perfect square. Now, given that
a ≥ 2 and b ≥ 2, and that when a = b = 2, the equation (a− b)2 = a+ b does not hold,
this implies that the total number of people must be at least 9. In this case, a = 6 and
b = 3 satisfy the equation (a− b)2 = a+ b.

We now construct such a scenario. Let 1, 2, 3, 4, 5, 6 represent the males, and 7, 8,
9 represent the females. Let x ≻ y denote that x defeats y. The match outcomes are as
follows:

1 ≻ 2, 5, 6, 7, 8, 9
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2 ≻ 3, 4, 6, 7, 8, 9

3 ≻ 1, 4, 5, 7, 8, 9

4 ≻ 1, 5, 8, 9

5 ≻ 2, 6, 7, 9

6 ≻ 3, 4, 7, 8

7 ≻ 4, 8

8 ≻ 5, 9

9 ≻ 6, 7

It can be verified that this satisfies the conditions.

Problem 1.22 (St. petersburg MO, 1996, Selection Round, 11th Grade, from AoPS).
A Young tableau is a figure obtained from an integral-sided rectangle by cutting out its
cells covered by several integral-sided rectangles containing its right lower angle. We call
a hook a part of the Young tableau consisting of some cell and all the cells lying either
to the right of it (in the same row) or below it (in the same column).

A Young tableau of n cells is given. Let s be the numbers of hooks containing exactly
k cells. Prove that s(k + s) ≤ 2n.

Solution (of user MellowMelon from AoPS). A straightforward counting argument.
Call the top left corner of a hook the base. Among the s hooks, no two bases can be in
the same row or column since the hook farther up or farther left would have strictly more
cells.

Associate to each of the s hooks its k cells, except double count the base, for s(k+1)
total. Then associate to each pair of the s hooks the unique cell above one of the
bases (same column) and to the left of the other (same row), and double count it, for

2

(
s

2

)
= s(s− 1) total. This procedure obtains a total of s(k+ s) and counts each cell at

most twice, so s(k + s) ≤ 2n.

Remark 1.22.1 (from the same source). The details of doing the count are motivated
by the equality case where the tableau is a square and the bases lie along the diagonal
containing the top right corner.

1.8 Unsolved Combinatorics

Problem 1.23 (from AoPS). Are there 4k+2 unit cubes (for some integer k) such that
their vertices have integer coordinates and each of them has a common face with exactly
three of other cubes?

Problem 1.24 (from AoPS). Suppose n is a positive integer. In a 2n× 2n chessboard,
all square cells are initially white. It is allowed to choose a row or a column each turn
and toggle the color of all cells in that row or column (white turns to black, black turns
to white). After a finite number of operations, the number of all possible configurations
of white cells is f(n). Prove that there exist positive constants c1, c2 such that for any
positive integer n we have

c1n
2

lnn
< f(n) <

c2n
2

ln lnn
.
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Problem 1.25 (5.67 from [9]). We are given a collection F of k-element sets with |F| =
m. For any distinct U, V ∈ F holds |U ∩V | = 1. Prove that if m > k2−k+1 then all the
sets of F have a common element. Prove that if k − 1 is prime then exists a collection
of k2 − k + 1 sets satisfying the problem’s conditions and which do not have a common
element.

Problem 1.26 (XIII International Festival of Young Mathematicians Sozopol 2024,
Theme for 10-12 grade, problem 7, from AoPS). The positive integers from 1 to n are
arranged in a sequence, initially in ascending order. In one move, we can swap the posi-
tions of two of the numbers, provided they share a common divisor greater than 1. Let sn
be the number of sequences that can be obtained with a finite number of moves. Prove
that sn = an!, where the sequence of positive integers (an)n≥1 is such that for any δ > 0,
there exists an integer N , for which for all n ≥ N , the following is true:

n−
(
1

2
+ δ

)
n

log n
< an < n−

(
1

2
− δ

)
n

log n
.

Problem 1.27 (from AoPS). Let Ei, 1 ≤ i ≤ n be finite sets such that ∀i, |Ei| = p,

and ∀i ̸= j, |Ei ∩ Ej| ≤ 1. What is the smallest possible value of

∣∣∣∣∣
n⋃

i=1

Ei

∣∣∣∣∣?
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2 Combinatorial Geometry

2.1 Graphs

Problem 2.1 (Oriol Solé, from AoPS). Let S be a set of n points in space such that
no four of them lie on the same plane. Let T be a set of n2 triangles with vertices in S.
Show that there are two triangles of T which share an inner point.

Solution (from AoPS). We shall prove that the problem statement holds even in case
when T contains only n2 − 3n+ 1 triangles for n ≥ 6.

Let kv denote the number of triangles in T with vertex v ∈ S. Double-count the
number of pairs (t, v) where t ∈ T is a given triangle and v is its vertex: 3(n2− 3n+1) =∑
v∈S

kv. Thus exists a point v ∈ S with

kv ≥
⌈
3(n2 − 3n+ 1)

n

⌉
= 3n− 8.

For ε > 0 consider the sphere Hε with center v and radius ε. For small enough ε the
sphere Hε intersects all the segments going out of v. Let V be the set of these intersection
points. Also for small enough ε the intersection of Hε with every triangle going out of v is
a continuous line (moreover it is a geodesic on Hε). Let E be the set of this intersections.
Define the graph G = (V,E). We need to prove that some two edges of G intersect in
a point other than a vertex, i.e. that G is not planar (don’t be confused by the term
planar; though G lies on a sphere, it can well be a planar graph). In fact, |V | ≤ n− 1 so

|E| = kv ≥ 3n− 8 > 3|V | − 6

which proves that G is not planar and has two intersecting edges, which correspond to
two triangles in T coming out of v with intersecting interiors.

2.2 Double Counting

Problem 2.2 (from AoPS). Given 100 points on a plane with no three collinear. Show
that at most 70% of the triangles, whose vertices (distinct) are chosen from the given
points, are acute-angled.

Solution (from the posts of users Ravi B and remark on AoPS). Let A(n) be the
maximum number of acute triangles among n points. For example, A(4) = 3. Consider
n ≥ 4. Notice that the maximum number of acute triangles is simply equal to A(n− 1)
multiplied by the amount of (n−1)-element subsets of the n points, divided the number of
ways of choosing n− 1 points including a given 3 points (representing an acute triangle).
Thus, we have

A(n) ≤ A(n− 1)(
n−3
n−4

) (
n

n− 1

)
=

n

n− 3
· A(n− 1)

Dividing by
(
n
3

)
we see that this is equivalent to A(n)

(n3)
≤ A(n−1)

(n−1
3 )

. From that inequality, we

first get A(5) ≤ 7 and then A(n)

(n3)
≤ 0.7 for n ≥ 5.

17

https://artofproblemsolving.com/community/c6h2334559p18765028
https://artofproblemsolving.com/community/c6h2334559p30897081
https://artofproblemsolving.com/community/c6h14796p105128
https://artofproblemsolving.com/community/c6h14796p105214
https://artofproblemsolving.com/community/c6h14796p6276587


Problem 2.3 (from AoPS). Given a set S of n points in plane. Prove that there exists
at least

√
n points in S such that no three are vertices of an equilateral triangle.

Solution (of user puzld from AoPS). Let E be the maximum set of points with the
desired property. Then each point in S/E must form an equaliteral triangle with at least
one segment formed by two points in S. Otherwise, we could simply add that point in E
and increase its cardinality by 1, thereby contradicting its maximality. Hence, since each
segment in E can be a member of at most 2 equaliteral triangles this inequality must
yield true:

2

(
|E|
2

)
≥ |S/E| ⇔ 2

(
|E|
2

)
≥ n− |E| ⇔ |E|2 − |E| ≥ n− |E| ⇔ |E|2 ≥ n ⇔ |E| ≥

√
n.

Problem 2.4 (Japan TST 2018 P4, from AoPS). Let n ≥ 3 be a positive integer. S is
a set of n points on the plane, with no three collinear. L is the set of all lines passing
through any two points in S. For any ℓ ∈ L, the separating number of ℓ is the product
of the number of points in S in the two sides of ℓ, excluding the two points on ℓ itself.
Determine the minimum possible total sum of all separating numbers.

Solution (of user Rickyminer from AoPS). Use Iverson notation.∑
ℓ∈L

separating number(ℓ)

=
∑

{A,B}⊂S

separating number(AB)

=
∑

{A,B}⊂S

∑
{C,D}⊂S−{A,B}

[ C,D are on the different side of AB ]

=
∑

{A,B}⊂S

∑
{C,D}⊂S−{A,B}

[ segment CD intersects with line AB ]

=
∑

{A,B,C,D}⊂S

∑
{X,Y,Z,T}={A,B,C,D}

[ segment XY intersects with line ZT ]

∗
≥

∑
{A,B,C,D}⊂S

2

= 2

(
n

4

)
where the inequality (∗) can be proved by direct check. The equality holds when each
four-point tuple forms a convex quadrilateral, or all n points form a convex n-gon.

2.3 Delaunay Triangulation

Problem 2.5 (from AoPS). Given n ≥ 4 points in a plane, such that no three points are
collinear and no four points are concyclic, let f(n) be the number of unordered pairs of
points in S such that there exists a circle containing these two points, whose interior or
boundary does not contain any other point in S. Prove that f(n) ≤ 3n− 6.
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Solution (sketch of a solution of user Ali3085 from AoPS). Consider the graph G on
n vertices with an edge between P,Q iff (P,Q) is such pair. Note that G is planar so
f(n) = E ≤ 3n− 6.

Problem 2.6 (239 MO 2024 S8, from AoPS). There are 2n points on the plane. No
three of them lie on the same straight line and no four lie on the same circle. Prove that
it is possible to split these points into n pairs and cover each pair of points with a circle
containing no other points.

Solution (using the post of user dgrozev from AoPS). Use Delaunay triangulation to
obtain a triangulation with a very special property — the circumcircle of each triangle
contains no other points among the given ones except its three vertices. A result due
to Dillencourt asserts the existence of perfect matching in Delaunay triangulation of an
even number of points. Each of the circles can cover only one edge of the matching and
eventually a vertex from another edge. Then slightly move each circle appropriately.

Problem 2.7 (Miklós Schweitzer 2002, from AoPS). Prove that there exists an absolute
constant c such that any set H of n points of the plane in general position can be coloured
with c log n colours in such a way that any disk of the plane containing at least one point
of H intersects some colour class of H in exactly one point.

Solution (from [1]). We will use Delaunay triangulation and, in particular, its following
property.

Proposition 2.7.1 (property of Delaunay triangulation). Let P be a set of points on
the plane in general position. If a, b ∈ P and there exists a circle that passes through
a and b and has no other points of P in its interior, then ab is an edge of the (unique)
Delaunay triangulation of points P .

This property also implies that if two vertices x, y ∈ P are not connected in the
Delaunay triangulation then any circle through x, y contains a point of P in its interior.

We will color the points using the following algorithm. Initially, we set P := H and
repeat the following procedure.

• Construct the Delaunay triangulation of the points in P and let the corresponding
planar graph be G(P ). Since G is a planar graph its vertices P can be colored in 5
colors so that no two of the same color are connected. One of the colors is used for
a set P ′ ⊂ P of at least |P |/5 vertices. Clearly, no two points of P ′ are connected
by an edge. We color all the points of P ′ in a color not yet used.

• Further, we set P := P \ P ′ and repeat the procedure till P ′ ̸= ∅.

For the brevity of explanation, we may assume that at each step, after coloring
the points in P ′, we delete them temporarily. Let D be an arbitrary disk containing at
least one point of H. We prove that there is a uniquely colored point in D. Visualize
the process of how points in H disappear in groups. We must prove that there is only
one remaining point in D just before it vanishes. This would imply that this point is
the uniquely colored point. Suppose, for the sake of contradiction, that a set of points
P ′ ⊂ H, |P ′| ≥ 2 is removed and after that there is no point left in D. Let us denote
the set of points just before the removal of P ′ as P , thus P ′ ⊂ P and there is no point of
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P \P ′ that is in D. It is easy to see that we can construct a disk D′ ⊂ D such that there
are no points of P ′ in its interior and there are at least two points, say x, y, of P ′ on its
boundary. There is also no point of P \P ′ inside D′, since they lie outside D. According
to the property of Delaunay triangulation, x and y must be connected in the Delaunay
triangulation of P , which is contradiction.

It remains to count the number of colors used. At each step, we color at least |P |/5
points of P and the uncolored ones are at most 4

5
|P |. That is, we finish after at most

log5/4 n < 4 log2 n steps.

2.4 Probabilistic Method

Problem 2.8 (from AoPS). Given 2n points and 3n lines on the plane. Prove that there
is a point P on the plane such that the sum of the distances of P to the 3n lines is less
than the sum of the distances of P to the 2n points.

Solution (sketch of a solution of user Pathological on AoPS). Let Q be an arbitrary
point in the plane, and consider a circle Ω centered at Q with radius R for some arbitrarily
large R.

As R is sufficiently large, the average distance from a point of Ω to any of the lines is

approximately R · 2
π

because
∫ 2π

x=0

| sinx|dx = 4. Also, the average distance from a point

of Ω to any of the points is approximately R. So for sufficiently large R, we are done.

Problem 2.9 (Korean Summer Program Practice Test 2016 8, from AoPS). There are
2n points on a plane in a general position. Prove that there exists a matching on them
with no self-intersections whose total length is at least 2

π
of total length of the longest

matching.

Solution (of user v_Enhance from AoPS). Color blue the longest matching, say of
length L. Take a projection in a uniformly random direction; suppose this gives us points
A1, A2, . . . , A2n, in that order. Let Pi be the point above Ai.

P1

P2

P3

P4

P5

P6

A1 A2 A3 A4 A5 A6

1 2 3 2 1

Call Σ the sum of the lengths of the blue projections. It’s well-known the projection
of a segment of length ℓ has average length 2

π
ℓ. So

E[Σ] =
2

π
L.
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So we will take any projection for which Σ ≥ 2
π
L; one must exist. In any case,

Σ ≤ A1A2n + A2A2n−1 + · · ·+ AnAn+1. (†)

We now construct a matching with no intersections whose length is at least the right-
hand side of (†). Over all matchings of {P1, . . . , Pn} to {Pn+1, . . . , P2n}, take the one
with shortest length. The minimality guarantees it has no self-intersections. However,
the sum of lengths of the projection is exactly the right-hand side of (†). This solves the
problem.

Problem 2.10 (IMO 1992, Day 2, Problem 5, from AoPS). Let S be a finite set of
points in three-dimensional space. Let Sx, Sy, Sz be the sets consisting of the orthogonal
projections of the points of S onto the yz-plane, zx-plane, xy-plane, respectively. Prove
that

|S|2 ≤ |Sx| · |Sy| · |Sz|,

where |A| denotes the number of elements in the finite set A.

Solution (of user grupyorum from AoPS). We will use information-theoretic tech-
niques, and in particular Han’s inequality (subadditivity of entropy). That is, if X, Y ,
and Z are random variables and H(X, Y, Z) denotes their joint entropy (for couples H is
defined similarly), then

H(X, Y ) +H(X,Z) +H(Y, Z) ≥ 2H(X, Y, Z).

Consider n-points in the space and the uniform distribution over them. Let (X, Y, Z)
be the joint random variable describing the coordinates of a single point. Using the
entropy of a uniform random variable, we have, H(X, Y, Z) = log n. Next, let n1, n2 and
n3 be the cardinalities of the sets obtained via projecting these n-points onto yz, xz, and
xy-planes, respectively.

Then, clearly, H(X, Y ) ≤ log n3, H(X,Z) ≤ log n2, and, H(Y, Z) ≤ log n1, since, a
uniform distribution achieves the maximum entropy. Now, observe what we have:

log n2 = 2H(X, Y, Z)

≤ H(X, Y ) +H(X,Z) +H(Y, Z)

≤ log n1 + log n2 + log n3

= log n1n2n3

whence n2 ≤ n1n2n3 as needed.

2.5 Lattices

Problem 2.11 (St. Petersburg MO, from AoPS). A convex 2n-gon has its vertices at
lattice points. Prove that its area is not less than n3/100.

Solution (of user Fedor Petrov).

Lemma 2.11.1. For any convex n-gon F with perimeter P some three vertices of F form
a triangle of area at most πP 2/n3.
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Proof. Let a1, a2, . . . , an be the sidelengths of F and αi be its external angles. Then
2Si = aiai+1 sinαi equals to the area of a triangle formed by three consecutive vertices of
F . So, by using sinx < x, AM-GM and

∑
αi = 2π we get

∏
(2Si) <

∏
a2i
∏

αi ≤

((
P

n

)2
2π

n

)n

.

Hence there exists j such that 2Sj < 2πP 2/n3.

Lemma 2.11.2. For any convex n-gon F of area S there exists an affine transformation
T ∈ SL(2,R) (i.e. an affine transformation which preserves the area) such that T (F ) has
perimeter at most 4

√
2S.

Proof. Consider the support lines to F parallel and orthogonal to its diameter (diameter
is the segment between two most distant points of F ). They form a rectangle of area at
most 2S. Choose T such that T maps this rectangle onto the square of the same area.
Such T is the desired map.

Combining the lemmas we see that for any convex n-gon of area S we may find three
of its vertices which form a triangle of area at most 32πS/n3. For an n-gon with integer
coordiantes this area may not be less then 1/2, so S ≥ n3

64π
.

2.6 Colorings

Problem 2.12 (Polish MO Recond Round 1986 p3, from AoPS). Let S be a sphere
cirucmscribed on a regular tetrahedron with an edge length greater than 1. The sphere
S is represented as the sum of four sets. Prove that one of these sets includes points P ,
Q such that the length of the segment PQ exceeds 1.

Solution (from AoPS). We will denote by [F ] the area of spheric figure F .
Inscribe a regular tetrahedron ABCD in the sphere and let O be its center. Let ΩA be

the sphere with center A passing through B,C,D; similarly define ΩB,ΩC . These spheres
intersect S through the blue circles in the figure. Their smaller arcs (electric blue) form
a spheric triangle ∆0 (with its interior) no two points of which lie on a distance greater
than 1. Note that any subset of S not contained in a copy of ∆0 contains two points
apart more than 1.

Consider the green circles with center O passing through B and C, C and A, A
and B. Their smaller arcs (light green) form a spheric triangle ∆1. Note that due to
symmetry S can be covered by exactly four copies of ∆1. Also note that ∆0 ⊊ ∆1, so
[∆0] < [∆1] = [S]/4.

Now suppose that S is partitioned into the sets S0, S1, S2, S3 and contrary to the
problem statement no one of them contains two points at distance more than 1. But
then each Si can be covered by a copy of ∆0, whence [S] ≤ 4[∆0] < 4[∆1] = S. This
contradiction finishes the proof.
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2.7 Coverings

Problem 2.13 (from AoPS). Let D be a collection of open disks in the plane which
cover a region K. Prove that there exists a collection D′ ⊆ D of disjoint disks, which,
being dilated by a factor of three with respect to their centres, cover the region K.

Solution (of user oVlad from AoPS). To each non-intersecting collection F ⊆ D of
disks, we associate a non-increasing sequence sF formed by the radii of the disks in F .
We then order these sequences in lexicographical order. We claim that a collection F for
which sF is maximal in this lexicographical order, ties broken arbitrarily, is satisfactory.

Assume otherwise. Then, there exists a point P ∈ K which is not covered by any
dillation of factor 3 of any disk in F . That is, for any D ∈ F of radius r and centre O
we have OP > 3r. Now, consider a disk D0 ∈ D which covers P. Let F ′ ⊆ F be the
(possibly empty) collection of disks in F intersected by D0.

Let O be the centre and r be the radius of D0. Choose any disk Di ∈ F ′ with centre
Oi and radius ri. Since D0 covers P we know OP < r. Additionally, since D0 and Di

intersect, OOi < r + ri. Lastly, as we’ve mentioned, OiP > 3ri. By using the triangle
inequality, it follows that r > ri. Recall that this holds for any disk Di ∈ F ′.

Consequently, the collection F = (F \ F ′) ∪ {D0} is non-intersecting. Because the
radius of D0 exceeds those of the disks that we’ve removed, it also follows that sF > sF
which is a contradiction. To conclude, F is, indeed, satisfactory.

2.8 Extremal Principle

Problem 2.14 (Polish MO Recond Round 1982 p4, from AoPS). Let A be a finite set of
points in space having the property that for any of its points P,Q there is an isometry of
space that transforms the set A into the set A and the point P into the point Q. Prove
that there is a sphere passing through all the points of the set A.

Solution (from AoPS). Consider the smallest sphere S containing the set A (in its
interior or on its border). Then there is a point P ∈ A which lies on S. Suppose that
there is a point Q ∈ A which does not lie on S. Consider the isometry sending Q to P
under which A is invariant. Then S is invariant too. But this means that the set A, after
being rotated around the center of S, is invariant. In particular the point Q /∈ S is sent
to the point P ∈ S under this rotation, which is absurd. Thus A ⊆ S as desired.

Problem 2.15 (from AoPS). Call a set of four distinct points A,B,C,D on the plane
exotic if AB · CD = AC · BD = AD · BC. Does there exist a set of five distinct points
on the plane such that any four of them are an exotic set?

Solution (from AoPS). No there are no such five distinct points on the plane. Suppose
there is a set S of such points A,B,C,D,E. Then each two of these points are the two
isodynamic points of the triangle formed by the remaining three points.

Recall that if U, V are the isodynamic points of XY Z then they are inverse in the
circumcircle Ω of XY Z. It follows that either U = V ∈ Ω or one of them lies inside Ω
and the other lies outside Ω.

Suppose that C := convS is two-dimensional, i.e. non-degenerate convex polygon.
Then there is a circle ω passing through three vertices of C such that no point of S lies
outside it. WLOG ω passes through A,B,C. Since D,E are the isodynamic points of
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ABC and none of them lies outside ω, they should lie on ω and coincide which is a
contradiction by D ̸= E.

Thus C is one-dimensional, i.e. a segment. But this is impossible too since for any
collinear points A,B,C the isodynamic points of degenerate triangle ABC do not lie on
that line and are symmetrical in that line. This contradiction finishes the proof.

Problem 2.16 (from AoPS). Four points are given inside a square of unit side length.
Is it true that two of them are less than 1 apart?

Solution (from AoPS). Yes, two points will be less than 1 apart. Let O be the square’s
center. Two of the given points are visible from O in an angle no more than 90◦. Take
P on the border of the square so that OP contains one of these points and take Q again
on the border of the square so that ∠POQ = 90◦ and the second point lies inside or on
the border of the angle POQ. Let the sides of the square containing P and Q meet at A.
Then the two selected points lie inside or on the border of the circle OPAQ with diameter
PQ so their distance does not exceed PQ ≤ 1. However these two points cannot coincide
with vertices of the square so their distance is less than 1.

A

O

P

Q

Problem 2.17 (of user EpicNumberTheory from AoPS). n photographers are par-
ticipating in a photography competition. They are assigned fixed arbitrary positions in
a plane from which they will click a photo. The camera has 90 degree range. The winner
is the photographer who got most people strictly in the photo. Determine the minimum
number of people in the photo of the winner for each n.

Note: collinearity doesn’t matter, i.e. if the photographers A,B,C lie in this order
on a line then A can click both B and C; also if ∠BAC = 90◦ then again A can click
both B and C.

Solution (from AoPS). Answer:
⌈
n+ 1

2

⌉
for n ≥ 3, else n−1. For n ∈ {1, 2} everything

is trivial so assume n ≥ 3.
Bound. Let the photographers form the set S ⊂ R2. If convS is a segment then

the photographer standing at its endpoint will capture all the remaining n− 1 so assume
otherwise. Consider the smallest circle ω containg S. Then there are distinct A,B,C ∈ S
which lie on ω. Let the angle at A in ∆ABC be the greatest. Then the diameter AD
from A has B and C in its different sides. Suppose that there are m points of S that
belong to AD (m ≥ 1 since A ∈ AD). Then in one side of AD, WLOG in the side of C,

there are at least
⌈
n−m

2

⌉
points of S. But then the photographer B can capture all the

points in the (closed) angle ABD, in total at least
⌈
n−m

2

⌉
+m =

⌈
n+m

2

⌉
≥
⌈
n+ 1

2

⌉
.
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Construction. Arrange the photographers in the vertices of a regular n-gon. Then

any of the photographers is able to capture only
⌈
n+ 1

2

⌉
others since the borders of the

camera’s span intersect ω (the circle passing through the photographers) in the endpoints
of a diameter.

2.9 Other Problems

Problem 2.18 (2014 Russian IX Southern Tournament, Premier League Math Fights,
Finals p3, from AoPS). 60 points are marked inside the unit circle. Prove that there is a
point on the circumference of this circle, the sum of distances from which to the marked
points does not exceed 80.

Solution (of user Marinchoo from AoPS). Take three points P1, P2, P3 on the circum-
circle such that they form an equilateral triangle. Note the sum of the distances from
the three points to the 60 points as S. For any point X on the circumcircle, note that
the sum of the distances from the three points to X is at most 4 because by Ptolemy’s
theorem this sum is equal to twice the longest segment, which is at most 2 (the diameter
of the unit circle). Thus S ≤ 60 × 4 = 240. On the other hand by pigeonhole principle
one of the three points has a sum of distances to the points which is ≤ 240

3
= 80.

Problem 2.19 (Polish MO Recond Round 1990 p2, from AoPS). In space, a point O and
a finite set of vectors −→v1 , . . . ,−→vn are given. We consider the set of points P for which the
vector

−→
OP can be represented as a sum a1

−→v1 + . . .+ an
−→vn with coefficients satisfying the

inequalities 0 ≤ ai ≤ 1 (i = 1, 2, . . . , n). Decide whether this set can be a tetrahedron.

Solution (from AoPS). We will prove that the point M , which is the end of the vector

−−→
OM =

1

2
(−→v1 + · · ·+−→vn)

is the center of symmetry of the considered set W . Let us assume that P ∈ W . Therefore,
the vector

−→
OP allows the representation

−→
OP = a1

−→v1 + · · ·+ an
−→vn, 0 ≤ ai ≤ 1 (i = 1, . . . , n).

Let Q be the end of the vector
−→
OQ = (1− a1)

−→v1 + · · ·+ (1− an)
−→vn.

The numbers 1− ai also lie between 0 and 1, so the equality

1

2
(
−→
OP +

−→
OQ) =

1

2
−→v1 + · · ·+ 1

2
−→vn =

−−→
OM

holds. That is, M is the center of symmetry of the set W . A tetrahedron does not have
a center of symmetry. Therefore, the set W cannot be a tetrahedron.

Problem 2.20 (Ilya Bogdanov, Kvant M2153, from AoPS). Sum of the solid angles of a
convex polyhedron equals to π. Prove that there is a closed path along its edges, passing
through each vertex exactly once.
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Solution (from [5]). Let M be the polyhedron. Consider a sphere of unit radius with
center O. Draw planes through O parallel to the faces of M ; they will partition the sphere
into several regions K1, . . . , Ks (note that for each region there is another one symmetric
to it in O). Now, if we transfer a vertex A of M to O (obtaining an angle SA) then the
part of the sphere lying in it will be union of several of Ki. Mark this parts, as well as
the parts symmetric to them in O (i.e. lying in the centrally symmetric angle S ′

A).
Do so for each vertex of M . Now we will count the number of times ti that we marked

Ki. In other words, ti is the number of polyhedral angles where Ki or its symmetric in
O are contained. Then the sum of the solid angles of M will be

Σ(M) :=
1

2

s∑
i=1

tiS(Ki)

where S(Ki) is the area of Ki (the multiplier 1
2

appears because each solid angle was
counted twice).

Consider a point T lying in the interior of Ki. Note that TO is not parallel to any
face of M (since otherwise T would lie on the border of the region). Draw a plane α
perpendicular to TO and project M on it. the projection would be a convex polygon N .

Consider a vertex A of M . Draw a line through it. If that line intersects M through
a segment then the projection π(A) of A lies inside N . If that line intersects M only
through A then π(A) is a vertex of N . Thus the following claim is proved:

Proposition 2.20.1. ti equals to the number of vertices of M whose projection lies in the
interior of N . The projections of the other vertices of M are the vertices of N . Moreover
the edges of N are the projections of edges of M .

Now back to the problem. If we mark all the polyhedral angles of M on the sphere
then the total area of the marked regions is 2π < 4π. Thus some point T of the sphere
will not be marked. Then projecting M on a plane perpendicular to OT we will get a
convex polygon N . Its border will be the projection of the desired Hamiltonian cycle on
M .

Problem 2.21 (IMO Longlist 1992, from AoPS). The colonizers of a spherical planet
have decided to build N towns, each having area 1/1000 of the total area of the planet.
They also decided that any two points belonging to different towns will have different
latitude and different longitude. What is the maximal value of N?

Solution (of user ocha and from the post of user FairyBlade on AoPS). Suppose the
maximum and minimum latitude of some town is given by points ℓM and ℓm, then no
other town can intersect the band of width w = |ℓMℓm|. The surface area of this band
is proportional to it’s width, i.e. A = 2πrw, where r is the radius of the planet. If the
most easterly and westerly points of the town subtend an angle θ with the center of the

sphere, then they chop the latitudinal band into an area of
θ

2π
A = rθw. Now the town

must be completely within this square(ish) area and no town can enter the latitudinal or
longitudinal bands that define the town.

Let {wi}Ni=1 be the widths of longitudinal bands made by the towns, and let {θi}Ni=1

be angles which represent width of the longitudinal bands of the towns. Then
∑
i

wi ≤ 2r
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and
∑
i

θi ≤ 2π and the area of town i is at most Ai = rθiwi =
4πr2

1000
. So by Cauchy-

Bunyakovsky-Schwarz

2r · 2π ≥

(∑
i

wi

)(∑
i

θi

)
≥

(∑
i

√
wiθi

)2

=

(
N

√
4πr

1000

)2

.

Therefore N ≤
√
1000 so maxN = 31. Construction is easily implied from the bound

as you just take the proportion of longitude and latitude and make ‘rectangular’ regions
with the exact area, and by construction they are not on the same latitude/longitude.

2.10 Unsolved Combinatorial Geometry

Problem 2.22 (from AoPS). Suppose 2017 points in a plane are given such that no
three points are collinear. Among the triangles formed by any three of these 2017 points,
those triangles having the largest area are said to be good. Prove that there cannot be
more than 2017 good triangles.

Problem 2.23 (Baltic Way 2024, Problem 15, from AoPS). There is a set of N ≥ 3
points in the plane, such that no three of them are collinear. Three points A, B, C in the
set are said to form a Baltic triangle if no other point in the set lies on the circumcircle
of triangle ABC. Assume that there exists at least one Baltic triangle. Show that there

exist at least
N

3
Baltic triangles.

Problem 2.24 (from AoPS). A plane has a special point O called the origin. Let P a set
of 2021 points on the plane such that points of P ∪{O} lie in general position. A triangle
with vertices in P is fat, if O lies inside that triangle. Find the maximum number of fat
triangles.

Problem 2.25 (Miklós Schweitzer 2004, from AoPS). Prove that there is a constant
c > 0 such that for any n > 3 there exists a planar graph G with n vertices such that
every straight-edged plane embedding of G has a pair of edges with ratio of lengths at
least cn.
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3 Geometric Inequalities
Problem 3.1 (Russian Festival of Young Mathematicians 2005, Seniors 4.8, from AoPS).
Prove that if the distance from a point inside a convex n-hedron to each of its vertices does
not exceed 1, then the sum of the distances from this point to all faces of the polyhedron
is less than n− 2.

Solution (from AoPS). Let O be the point inside the given polyhedron P . Let S be the
unit sphere with center O. We denote by d(X,Q) the distance from the point X to the
plane of the polygon Q.

Consider any face f of P . The plane of f intersects S through a circle σf . Let Ωf

and Ω′
f denote the solid angles with apex O of the cones with bases f and σf , respectively.

According to the spherical caps’ area formula we have

Ω′
f = 2π(1− d(O, f)) ⇐⇒ d(O, f) = 1−

Ω′
f

2π
.

Thus by summing over all the faces of P we get∑
f

d(O, f) ≤
∑
f

(
1−

Ω′
f

2π

)
<
∑
f

(
1− Ωf

2π

)
= n− 2

where we used that Ωf < Ω′
f and

∑
f

Ωf = 4π.

Problem 3.2 (Dorlir Ahmeti and Alexander Gunning, from AoPS). Show that for any
cyclic hexagon ABCDEF we have:

3
√
AD ·BE · CF ≥ 3

√
AB · CD · EF +

3
√
BC ·DE · FA

with equality if and only if the lines AB,CF,DE are concurrent or parallel; BC,AD,EF
are concurrent or parallel and CD,BE,FA are concurrent or parallel.

Solution (from AoPS). For easy notation we write AB = a, BC = b, CD = c, DE = d,
EF = e, FA = f , AC = p, CE = q, EA = r, AD = u, BE = v and CF = w. We want
to prove

3
√
uvw ≥ 3

√
ace+ 3

√
bdf.

Using Ptolemy’s theorem on the cyclic quadrilaterals ABCE, CDEA and EFAC we
have the following equalities

aq + br = pv, cr + dp = qu and ep+ fq = rw.

Multiplying all three equations and applying Holder’s inequality we find that

pqruvw = (aq + br) (cr + dp) (ep+ fq) ≥
(

3
√
acepqr + 3

√
bdfpqr

)3
= pqr

(
3
√
ace+ 3

√
bdf
)3

.

Dividing both sides by pqr we obtain

uvw ≥
(

3
√
ace+ 3

√
bdf
)3

⇒ 3
√
uvw ≥ 3

√
ace+ 3

√
bdf
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as desired. Holder gives us equality iff

aq : cr : ep = br : dp : fq.

Since we have aq + br = pv, cr + dp = qu and ep+ fq = rw, equality holds iff

aq : cr : ep = br : dp : fq = pv : qu : rw.

From this we can easily find

p2

qr
=

cf

de
=

aw

ev
⇔ cvf = awd ∧ r2

pq
=

ad

bc
=

eu

cw
⇔ awd = bue ⇔

awd = bue = cvf.

Hence the equality holds iff AB · CF ·DE = BC · AD · EF = CD ·BE · FA.
We can show BC,AD, and EF concur or are parallel if and only if

AB · CF ·DE = CD ·BE · FA

and by symmetry this will be enough to establish that the concurrence condition charac-
terises the equality cases.

(⇒) If they are parallel, AB = CD, CF = BE, and DE = FA, as these are opposite
edges and diagonals of isosceles trapezia. Otherwise, they will concur at some point X.
The cyclic quadrilaterals ABCD, BCEF and ADEF give us the similar triangles

△XBA ∼ △XDC,△XEB ∼ △XCF,△XAF ∼ △XED.

So
AB · FC · ED

CD ·BE · AF
=

XA ·XC ·XE

XC ·XE ·XA
= 1.

Similarly the other cases.
(⇐) Now suppose

AB · FC · ED

CD ·BE · AF
= 1

Let A′ be the unique point on the arc FAC such that BC,A′D and EF are concurrent
or parallel. We can apply the direct implication argument on hexagon A′BCDEF and
obtain the equality

A′B

A′F
=

CD ·BE

FC · ED
=

AB

AF
.

And we know by cyclic quadrilateral theorems that ∠FAC = ∠FA′C. So we have
△FAC ∼= △FA′C and A = A′. Similarly the other cases.

Problem 3.3 (IMO Shortlist 1995, G7, from AoPS). Let ABCD be a convex quadri-
lateral and O a point inside it. Let the parallels to the lines BC,AB,DA,CD through
the point O meet the sides AB,BC,CD,DA of the quadrilateral ABCD at the points
E,F,G,H, respectively. Then prove that

√
[AHOE] +

√
[CFOG] ≤

√
[ABCD].

Solution (of user Wizzy from AoPS). Note that ABCD is the Minkowsky sum of
AHOE and CFOG. Hence the result follows from Brunn-Minkowsky inequality.
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Problem 3.4 (2015 Tsinghua autumn camp, Q2, from AoPS). Let S be the area of the
convex pentagon ABCDE, S1, S2, S3, S4, S5 be the areas of △ABC, △BCD, △CDE,
△DEA and △EAB, respectively. Prove that

S1 + S2 + S3 + S4 + S5 > S.

Solution (of user arqady from AoPS). The inequality follows from Möbius-Gauss for-
mula

S2 − (S1 + S2 + S3 + S4 + S5)S + S1S2 + S2S3 + S3S4 + S4S5 + S5S1 = 0. (1)

It can be proved as follows. Let AC ∩ BE = {K}, AC ∩ BD = {L}, CE ∩ BD = {M},
CE ∩ AD = {N}, AD ∩BE = {P}.

Since [BLC] · [ALD] = [ABL] · [CLD], we obtain

[BLC](S − S1 − S2 − S4 + [BLC]) = (S1 − [BLC])(S2 − [BLC])

which gives [BLC] =
S1S2

S − S4

. Similarly we get [APE] =
S4S5

S − S2

, [ABK] =
S5S1

S − S3

etc.

Hence
S5

S − S3

· S5

S − S2

=
AK

AC
· AP
AD

=
[AKP ]

[ACD]
=

S5 − S5S1

S−S3
− S4S5

S−S2

S − S1 − S4

which implies (1).

Remark 3.4.1 (of user sqing from AoPS). See [4].

Problem 3.5 (from AoPS). M,N,P are three points lying respectively on the edges
AB,BC,CA of a triangle ABC such that AM + BN + CP = MB +NC + PA. Prove
that SMNP ≤ 1

4
SABC

Solution (from AoPS). Denote BN = a1, NC = a2, CP = b1, PA = b2, AM = c1,MB =
c2. Then [AMP ] = [ABC] c1b2

(c1+c2)(b1+b2)
etc. so we need to prove that

∑
cyc

c1b2
(c1 + c2)(b1 + b2)

≥ 3

4
.

After expanding and regrouping it becomes∑
cyc

(a1b1−a2b2)(c1−c2) ≤ 0 ⇐⇒
∑
cyc

(a1 + a2)(b1 − b2) + (a1 − a2)(b1 + b2)

2
(c1−c2) ≤ 0.

Denote x = a1 − a2, y = b1 − b2, z = c1 − c2 and a = a1 + a2, b = b1 + b2, c = c1 + c2. Now
it remains to prove

ayz + bzx+ cxy ≤ 0

for x+y+z = 0 and a, b, c being triangle sides. WLOG xy ≥ 0. Then inserting z = −x−y
yields the obvious inequality

ayz + bzx+ cxy = −ay2 − bx2 − (a+ b− c)xy ≤ 0.

Equality is attained when x = y = z = 0, i.e. M,N,P are the sides’ midpoints.
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Problem 3.6 (Example 6 from Cosine theorem and its consequences from Kvant №7
1972). Given a triangle, divide it into two parts of equal area with the shortest segment.

Solution (from the same source). Let ABC be the triangle and M ∈ AB,N ∈ AC be
such that MN divides ABC into parts of equal areas. Let S = [ABC] Applying cosines’
theorem to AMN we find

MN2 = (MA− AN)2 + 2S tan
A

2
.

Therefore its minimum happens for AM = AN and is equal to
√
2S tan A

2
. If WLOG

∠A ≤ ∠B ≤ ∠C, then this is the desired segment. To construct it we mark M,N so
that AM = AN =

√
bc
2
.

3.1 Unsolved Geometric Inequalities

Problem 3.7 (Ilya Bogdanov, Kolmogorov Cup, 2011, from AoPS). Let O be an arbi-
trary point inside a tetrahedron ABCD. Prove that

[AOC] · [BOD] ≤ [AOB] · [COD] + [AOD] · [BOC].

Problem 3.8 (from AoPS). Assume four circles are such that any three of them have a
common intersecting point on the surface of a sphere of radius R and the center O of the
sphere is inside the space blocked by the circles. Prove that

Ra +Rb +Rc +Rd ≥ 3R

where Ri are the radii of these four circles.

Problem 3.9 (from AoPS). Given is a polyhedron A1A2A3A4A5 (where A1A2A3A4 and
A5A2A3A4 are tetrahedrons) whose nine edges are all tangent to a sphere Γ. The length
of the tangent from Ai to Γ is ai. Prove that

1

a21
+

3

a1a5
+

1

a25
>

2

a22
+

2

a23
+

2

a24
.

Problem 3.10 (from AoPS). Let ABC be a triangle having area ∆. Let BCNA, ACNB,
ABNC be erected equilateral triangles on the sides of △ABC, all outward. Let the area
of the triangle formed by centroids of these equilateral triangles be ∆N (outer Napoleon
Triangle). Let the area of equilateral triangle whose vertices are on different sides of
△ABC be ∆X . Show that ∆N ·∆X ≥ 4∆2.

Problem 3.11 (from AoPS). Let Rn have the usual dot product and norm. When
v = (x1, . . . , xn) ∈ Rn, let Σv = x1 + · · ·+ xn. Prove that

|v|2 · |w|2 ≥ (v ·w)2 +
1

n
(|v| · |Σw| − |w| · |Σv|)2

for any vectors v,w ∈ Rn.
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4 Geometry
Problem 4.1 (Problem 7 from [8]). Prove that the area of regular octagon is equal to
the product of the lengths of its shortest and longest diagonals.

Solution (from the same source). Let A0A1 . . . A7 be the octagon. Then its area is equal
to that of the rectangle, formed by the lines A0A6, A2A4 and the lines through A1, A5

perpendicular to A1A5.

Problem 4.2 (Israel Autumn 2016 TST1/3, from AoPS). Prove that there exists an
ellipsoid touching all edges of an octahedron if and only if the octahedron’s diagonals
intersect. (Here an octahedron is a polyhedron consisting of eight triangular faces, twelve
edges, and six vertices such that four faces meat at each vertex. The diagonals of an
octahedron are the lines connecting pairs of vertices not connected by an edge).

Solution (from AoPS). Let ABCDEF be the octahedron so that AD,BE,CF are its
diagonals.

"Only if" part.
First we will prove the only if part. Since ellipsoid is the affine image of sphere we

may assume that the given ellipsoid is the sphere Γ. Let Te be the point of tangency of
Γ with edge e.

Let X be the point on the line AD (but not segment AD, maybe at infinity) such that
AX/XD = ATAB/TBDD. By Menelaus for ABD we get that TAB, TBD, X are collinear.
Similarly TAE, TED, X are collinear. Hence TAB, TBD, TDE, TEA are coplanar and since
they lie on Γ they also lie on a circle ω. Note that there is a point Y (maybe at infinity)
such that the cone with vertex Y tangent to Γ touches it through circle ω.

We aim to prove that A,B,D,E are coplanar. Then AD and BE will intersect.
Similarly AD and CF , BE and CF will intersect too. And since AD,BE,CF are not
coplanar it will follow that they are concurrent.

Let γA be the circle through which the cone with vertex A touches Γ. Similarly
define circles for other vertices of the octahedron. Coplanarity of A,B,D,E is equivalent
to concurrency of the planes of γA, γB, γD, γE by polar duality. But each of this circles
touches its two neighbors whence their common tangent lines pass through Y (why?)1.
It follows that the planes of circles γA, γB, γD, γE pass through Y , as desired.

"If" part.
Now we prove the converse, that is, if the diagonals concur at a point P then there

is an ellipsoid touching the edges.
It is not difficult to check that the four intersection lines of the opposite faceplanes

of octahedron lie in a plane π iff the diagonals concur (for example, use Desargues’
theorem for an opposite pair of faces). Hence in our case the plane π exists. Send it
to infinity. Then the diagonal quadrilaterals ABDE etc. become parallelograms. Hence
the diagonals are halved by P . Consider the affine transformation making AD,BE,CF
pairwise perpendicular and scaling them to equal lengths. Then our octahedron becomes

1Invert in TAB . Keep notations the same. Then γA, γB become parallel lines and γD, γE become
circles tangent to each other and each tangent to one of γA, γB . Then TDE is their internal homothety
center and hence the common tangent t through TDE to γD, γE is parallel to γA, γB . This means that
before inversion the preimage of t was a circle through TAB , TDE tangent to the four circles γ. Hence
the circles t, γA, γB had a radical center, i.e. a point Z for which the segments ZTAB , ZTBD, ZTDE are
equal and tangent to Γ. But this means that Z ≡ Y as needed.
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a regular octahedron which obviously has a sphere tangent to its edges. Its preimage will
be the desired ellipsoid.

Problem 4.3 (I.F. Sharygin, Kvant M1184). On each edge of a tetrahedron a point is
chosen. Draw a plane through each triple of points, lying on edges with common vertex.
Prove that if three of this planes touch the sphere inscribed in the tetrahedron, then the
fourth plane also touches it.

Solution (using the hint from Kvant M1184). Let ABCD be the tetrahedron and Pe be
the point chosen on its edge e. WLOG PDAPDBPDC is the plane to be shown to touch
the insphere. We will use the following

Lemma 4.3.1. A convex quadrihedral angle with consecutive planar angles α, β, γ, δ
admits an inscribed sphere iff α+ γ = β + δ; if α+ γ < β + δ (>, respectively) then the
sphere touching the planes of angles β, γ, δ intersects the plane of α (does not intersect,
respectively).

Proof. This is obvious.

According to the lemma, for each of the vertices PAB, PBC , PCA of octahedron P with
vertices Pe, sums of opposite planar angles are equal. Hence the sum S of angles of face
PDAPDBPDC and of opposite angles in respective quadrihedral angles of P equals to

S =
∑

A→B→C

(∠PDAPDBPDC + ∠PABPDBPBC)

= π +
∑

A→B→C

(π − ∠PDBPABPBC − ∠PDBPBCPAB)

= 4π −
∑

A→B→C

(∠PDAPACPCD + PBAPACPCB)

= 3π −
∑

A→B→C

(π − ∠PACPADPDC − ∠PACPCDPDA)

=
∑

A→B→C

(∠PDAPDBPAB + ∠PDCPDBPBC).

It follows that if PDAPDBPDC does not touch the insphere then the angle difference

δ(A,B,C) = ∠PDAPDBPDC + ∠PABPDBPBC − ∠PDAPDBPAB − ∠PDCPDBPBC

is positive for some permutation of A,B,C and negative for another. But according to
lemma this means that PDAPDBPDC should both intersect the insphere and not intersect
it, which is impossible.

Problem 4.4 (from some All-Soviet Olympiad, taken from earthz.ru). The projections
of a body on two planes are disks. Prove that these disks are equal.

Solution (from the same source). If the planes are parallel then it is obvious so assume
otherwise. Then the projection of the body on the intersection line ℓ of the two planes
coincides with the projection of each of the disks on ℓ. But the projection of a disk on a
line in its plane is a segment equal to its diameter.
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4.1 Unsolved Geometry

Problem 4.5 (from AoPS). Given a quadrilateral ABCD which has an incircle ⊙(I).
P is a point which satisfies ∠APB = ∠CPD (P lies at outside ABCD). Prove that the
incircles of △PAB, △PBC, △PCD, △PDA have a common tangent line.
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5 Number Theory

5.1 Divisibility

Problem 5.1 (Putnam 1982 B4, from AoPS). Let n1, n2, . . . , ns be distinct integers such
that

(n1 + k)(n2 + k) · · · (ns + k)

is an integral multiple of n1n2 · · ·ns for every integer k. For each of the following assertions
give a proof or a counterexample:

(a) |ni| = 1 for some i,

(b) If further all ni are positive, then {n1, n2, . . . , n2} = {1, 2, . . . , s}.

Solution (of user alexheinis from AoPS). First note that none of the ni equals 0, since
taking k large gives Πs

1(ni + k) > 0, hence not a multiple of 0.

(a) Suppose not then |ni| ≥ 2 for all i. Let N :=
∏s

1 |ni|. Then N |
∏s

1 |ni + 1| and
N |

∏s
1 |ni − 1|. Multiplying we find N2 |

∏s
1(n

2
i − 1) hence

∏s
1 n

2
i ≤

∏s
1(n

2
i − 1),

contradiction.

(b) Let f(x) :=
(x+ n1) · · · (x+ ns)

N
then it is given that f : Z → Z. We can expand

f =
∑∞

0 ck
(
x
k

)
and then it is well-known that all ck ∈ Z. The leading term is s!

N

(
x
s

)
hence N | s!. Since N is a product of the s distinct positive integers ni, we must
have {ni} = {1, · · · , s}.

Problem 5.2 (from AoPS). Find the smallest integer n > 1 such that there exist positive
integers a1, ..., an for which

a21 + · · ·+ a2n | (a1 + · · ·+ an)
2 − 1.

Solution (of user Solar Plexus on AoPS). Let Nmin be the smallest integer n > 1 for
which there exists n positive integers a1, a2, . . . , an for which

n∑
i=1

a2i | (
n∑

i=1

ai)
2 − 1. (1)

Then we prove that Nmin = 9. Suppose we have n positive integers satisfying (1). Assume∑n
i=1 ai is even. Then (

∑n
i=1 ai)

2 − 1 is odd, implying
∑n

i=1 a
2
i is odd by (1). Hence

1 = 1− 0 ≡
n∑

i=1

a2i −
n∑

i=1

ai =
n∑

i=1

ai(ai − 1) (mod 2),

which is impossible since ai(ai−1) is even. Consequently
∑n

i=1 ai is odd by contradiction.
This fact means 8 | (

∑n
i=1 ai)

2 − 1 and
∑n

i=1 a
2
i is odd, which combined with (1) give us

8
n∑

i=1

a2i | (
n∑

i=1

ai)
2 − 1. (2)
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Therefore by (2)

8
n∑

i=1

a2i < (
n∑

i=1

ai)
2 =

n∑
i=1

a2i + 2
∑

1≤i<j≤n

xixj = n

n∑
i=1

a2i −
∑

1≤i<j≤n

(xi − xj)
2,

yielding

(8− n)
n∑

i=1

a2i +
∑

1≤i<j≤n

(xi − xj)
2 < 0. (3)

Obviously, if n ≤ 8, then in inequality (3) the LHS > 0, contradicting (3). Hence n > 8.
By setting n = 9 and choosing (a1, a2, a3, a4, a5, a6, a7, a8, a9) = (3, 3, 4, 5, 6, 6, 7, 8, 9),

we obtain S1 =
∑9

i=1 ai = 51 and S2 =
∑9

i=1 a
2
i = 325, yielding 8S2 = S2

1 − 1, which
means a1, a2, . . . , a9 satisfies (1). In other words, Nmin = 9.

Problem 5.3 (Marin Hristov, Bulgarian Autumn Math tournament, 2024, p11.4, from
AoPS). Find the smallest number n ∈ N, for which there exist distinct positive integers
ai, i = 1, 2, . . . , n such that the expression

(a1 + a2 + · · ·+ an)
2 − 2025

a21 + a22 + · · ·+ a2n

is a positive integer.

Solution (of user zhihanpeng2.0 from AoPS). Let (
∑

ai)
2 − 2025 = k

∑
a2i , k ∈ Z+.

We have
∑

ai ≡
∑

a2i (mod 2) so
∑

ai ≡
∑

a2i ≡ 1 (mod 2). Thus 8 | k
∑

a2i so 8 | k
and

8 ≤ k <
(
∑

ai)
2∑

a2i
< n.

Hence n ≥ 9. The tuple (a1, a2, . . . , a9) = (15, 16, 17, 18, 19, 20, 21, 26, 31) works.

Remark 5.3.1 (of user chronondecay from AoPS). Alternative construction: we take
{ai} = {m,m± a,m± b,m± c,m± d} with 0 < a < b < c < d < m. Then the condition
(
∑

ai)
2−2025 = 8

∑
a2i simplifies to 2025+16(a2+b2+c2+d2) = 9m2, which is easy to find

solutions for (e.g. taking mod 16, we get m ≡ ±1 (mod 8)); the smallest is (m, a, b, c, d) =
(23, 3, 4, 5, 11), which corresponds to {ai} = {12, 18, 19, 20, 23, 26, 27, 28, 34}.

Problem 5.4 (Dan Brown, IMO Shortlist 2007, N2, from AoPS). Let b, n > 1 be integers.
Suppose that for each k > 1 there exists an integer ak such that b− ank is divisible by k.
Prove that b = An for some integer A.

Solution (of user ali666). Insert k = b2. Then b2 | b − ank so ank = b(bx + 1). But
gcd(b, bx+ 1) = 1 therefore b = An for some integer A.

Problem 5.5 (46th International Tournament of Towns, Junior O-level P3, Fall 2024,
from AoPS). A positive integer M has been represented as a product of primes. Each of
these primes is increased by 1. The product N of the new multipliers is divisible by M .
Prove that if we represent N as a product of primes and increase each of them by 1 then
the product of the new multipliers will be divisible by N .

36

https://artofproblemsolving.com/community/c6h3448317p33265940
https://artofproblemsolving.com/community/c6h3448317p33271859
https://artofproblemsolving.com/community/c6h3448317p33273181
https://artofproblemsolving.com/community/c6h214712p1187198
https://artofproblemsolving.com/community/c6h214712p1187220
https://artofproblemsolving.com/community/c6h3415279p32882441


Solution (of user Davsch from AoPS). Firstly, we claim that the largest prime factor
of M is 3. Indeed, assume M = pe11 pe22 . . . pekk is the prime factorization with p1 < p2 <
· · · < pk and all ei > 0.

Then we need (p1 + 1)e1 . . . (pk + 1)ek to be divisible by pk. Since the last factor is
not, we know pk | pj + 1 for some j, in particular pk ≤ pj + 1. But pj < pk, so they must
be consecutive primes.

Now write M = 2a3b. Then N = 22b3a is divisible by M iff 2b ≥ a ≥ b. Performing
the operation again, we get 22a32b, which is divisible by N iff 2a ≥ 2b ≥ a, which is
equivalent to above chain of inequalities.

5.2 Sets and Combinatorial Number Theory

Problem 5.6 (from AoPS). Do there exist 101 consecutive odd positive integers such
that each of them has a prime divisor that doesn’t exceed 43?

Solution (of user MyobDoesMath from AoPS). At most ⌈101/p⌉ of the integers are
divisible by p for p = 5, . . . , 43, which gets us ⌈101/5⌉+ . . .+ ⌈101/43⌉ = 88. As at least
⌊1/3⌋ of these (for each p respectively) are divisible by 3, we get at least 88/3 > 29 that
oversect with the ⌈101/3⌉ = 34 integers that are divisible by 3. So if we assume all other
counted integers are distinct (which certainly doesn’t hold true but provides an upper
bound), we get ⌈101/3⌉+ (88− 29) = 34 + 88− 29 = 93 < 101 integers divisible by one
prime not exceeding 43. So it should not be possible.

Problem 5.7 (from AoPS). For n = p1
a1 · · · psas define Ω(n) = a1 + · · ·+ as. Prove that

there exist 2020 consecutive positive integers such that there are 1975 integers n such
that Ω(n) < 11.

Solution (of user HoshimiyaMukuro from AoPS). Define

f(n) = |{k : 1 ≤ k ≤ 2020, Ω(n+ k) < 11}| .

2021 < 211 so f(1) = 2020.
By Chinese Remainder Theorem, there exists an integer n0 such that n0 + k ≡ 0

(mod p11k ) for all 1 ≤ k ≤ 2020, where p1, p2, ..., p2020 are distinct prime numbers, each
greater than 10000. Thus f(n0) = 0.

It is not difficult to see that f(n+1)−f(n) ∈ {−1, 0, 1}. Thus by discrete continuity
there exists 1 ≤ n ≤ n0 such that f(n) = 1975.

Problem 5.8 (Sutanay Bhattacharya, Indian National Mathematical Olympiad 2023,
from AoPS). Let S be a finite set of positive integers. Assume that there are precisely
2023 ordered pairs (x, y) in S × S so that the product xy is a perfect square. Prove that
one can find at least four distinct elements in S so that none of their pairwise products
is a perfect square.

Note: As an example, if S = {1, 2, 4}, there are exactly five such ordered pairs:
(1, 1), (1, 4), (2, 2), (4, 1), and (4, 4).

Solution (of user Tintarn from AoPS). We call two numbers x, y equivalent iff their
product is a perfect square. It is easy to check that this defines an equivalence relation
(i.e. is symmetric, reflexive, transitive), hence we can partition S into equivalence classes
with r1, . . . , rk elements. Then r21 + · · ·+ r2k = 2023 and hence k ≥ 4 by mod 8.
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Problem 5.9 (Rioplatense L2-2019/3, from AoPS). Let S be a collection of 2n + 1
numbers less or equal than 2n with the following property: the product of any n numbers
of S divides the product of the n+ 1 remaining numbers of S. Prove that S has at least
2 equal numbers.

Solution (of user OronSH from AoPS). The idea is to consider a prime p and consider
the νps of the numbers. Say this sequence is a1, a2, . . . , a2n+1 with a1 ≤ a2 ≤ · · · ≤ a2n+1.
Then the condition is equivalent to a1+a2+ · · ·+an+1 ≥ an+2+ · · ·+a2n+1. Additionally
note that ai ≤ n from the 2n bound. We claim that an+1 = an+2. Otherwise set an+1 = k
and we have

k(n+ 1) ≥ a1 + · · ·+ an+1 ≥ an+2 + · · ·+ a2n+1 ≥ (k + 1)n,

so k ≥ n but then an+2 ≥ k + 1 ≥ n+ 1, impossible.

Problem 5.10 (239 MO p8, from AoPS). There are several rational numbers written
on a board. If the numbers x and y are present on the board, we can add the number
(x+ y)/(1− xy) to it. Prove that there is a rational number that cannot ever appear on
the board.

Solution (of user internationalnick from AoPS). Choose a sufficiently large prime
number p ≡ 1 (mod 4) such that for every number x initially written on the board,
we have νp (x

2 + 1) ≤ 0. We will prove that this property is also true for new numbers.

Indeed, assume we add the number z =
x+ y

1− xy
such that νp (z2 + 1) > 0. Let

a

b
and

c

d
be

irreducible fractions of x, y, respectively. Then z =
ad+ bc

bd− ac
⇒ νp

(
(a2 + b2)(c2 + d2)

(bd− ac)2

)
>

0 ⇒ νp (a
2 + b2) > 0 ∨ νp (c

2 + d2) > 0. However, if νp (a2 + b2) > 0 for instance, then

p ∤ b ⇒ νp (x
2 + 1) = νp

(
a2 + b2

b2

)
> 0, absurd. Thus, let p = u2 + v2, it follows that

u

v
never appears on the board.

Problem 5.11 (Anant Mudgal and Rohan Goyal, India EGMO TST 2023/2, from
AoPS). Alice has an integer N > 1 on the blackboard. Each minute, she deletes the
current number x on the blackboard and writes 2x+ 1 if x is not the cube of an integer,
or the cube root of x otherwise. Prove that at some point of time, she writes a number
larger than 10100.

Solution (of user L567 from AoPS). Note that 2x + 1 + 1 = 2(x + 1) and x3 + 1 =
(x + 1)(x2 − x + 1) with x2 − x + 1 odd always. So the ν2(n + 1) goes up by 1 when
2x + 1 is done and stays the same when you take the cube root. So the only way the
numbers Alice writes are bounded is if ν2(n + 1) remains constant eventually, but then
only cube roots will be taken, which cannot go on forever since 1 will never be written
on the board.

Problem 5.12 (Brazil EGMO TST2 2024 P3, from AoPS). Consider 90 distinct positive
integers. Show that there exist two of them whose least common multiple is greater than
2024.
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Solution (of user yofro from AoPS). Notice that lcm(a, b) =
ab

gcd(a, b)
. Also notice that

by the Euclidean Algorithm, gcd(a, b) ≤ b − a. Hence lcm(a, b) ≥ ab

a− b
. If we require

some least common multiple to be greater than 2024, it is enough to find a and b such

that
ab

a− b
> 2024, or, equivalently,

1

b
− 1

a
<

1

2024
.

Let the numbers be a1, a2, . . . , a90 with a1 < a2 < · · · < a90. We wish to show that

for some i,
1

ai
− 1

ai+1

<
1

2024
. Fix some t < 90. Consider

90∑
j=t

(
1

aj
− 1

aj+1

)
=

1

at
− 1

a90
.

This implies by Pigeonhole that there is a gap of size at most(
1

at
− 1

a90

)
1

90− t
.

Because at ≥ t we get that this quantity is at most
1

t(90− t)
. For t = 45 it is at most

1

2025
<

1

2024
and we are done.

Problem 5.13 (from AoPS). Let n be a positive integer. Using the integers from 1 to
4n inclusive, pairs are to be formed such that the product of the numbers in each pair is
a perfect square. Each number can be part of at most one pair, and the two numbers in
each pair must be different. Determine, for each n, the maximum number of pairs that
can be formed.

Solution (of user ibh_qys from AoPS). Answer: n.
Consider each integer k from 1 to 4n. Any integer k can be expressed in the form

s · t2, where s is square-free (i.e., s has no square factors other than 1), and t is a
positive integer. This representation isolates the square-free component s and the square
component t2 of each integer.

To form pairs whose product is a perfect square, we must pair numbers with the
same square-free component s. For each square-free s, consider the numbers of the form
s · (2t − 1)2 and s · (2t)2 for all t. Pair these s · (2t − 1)2 and s · (2t)2. It is easy to see
that the number of pairs formed in this way is the largest.

For each s, as mentioned above, the pairing operation will at most leave one number
of the form s · (2t + 1)2 unpaired. These remaining numbers have the same form as the
first term of each pair, s · (2t − 1)2, and are not multiples of 4. Since all multiples of 4
are already encompassed in a portion of the second element of s · (2t)2, this constitutes
a one-to-one correspondence between all multiples of 4 and all pairs. Given that the
numbers range from 1 to 4n, there will be exactly n such pairs formed.

Problem 5.14 (4.18 from [10], from AoPS). Prove that if the positive integer n is not a
prime power then exists a permutation i1, . . . , in of 1, . . . , n so that

n∑
k=1

k cos
2πik
n

= 0.
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Solution (from the same source). n can be represented as the product pq of coprime
positive integers p > 1 and q > 1. For each k ∈ {1, 2, . . . , n} choose the numbers

m ∈ {0, 1, . . . , p− 1}, l ∈ {1, 2, . . . , q}

such that k = mq+ l and put ik = r+1 where r is the remainder of division of mq+ lp−1
on n. This way we get the numbers

i1, i2, . . . , in ∈ {1, 2, . . . , n}.

Note that they are distinct. Indeed, suppose that for some distinct

k1 = m1q + l1, k2 = m2q + l2

holds ik1 = ik2 . Then the number

(m1q + l1p)− (m2q + l2p) = (m1 −m2)q + (l1 − l2)p

is divisible by n = pq. But since p and q are coprime, p | |m1−m2| < p and q | |l1−l2| < q
whence m1 = m2 and l1 = l2, contradiction. Thus {i1, . . . , in} is a permutation of
{1, . . . , n}. Using the periodicity of sinx, cosx and grouping the summands in the sum

S =
n∑

k=1

k cos
2πik
n

we get

S =

p−1∑
m=0

q∑
l=1

(mq + l) cos
2π(mq + lp)

pq

=

p−1∑
m=0

mq

q∑
l=1

cos

(
2πm

p
+

2πl

q

)
+

q∑
l=1

l

p−1∑
m=0

cos

(
2πm

p
+

2πl

q

)

=

p−1∑
m=0

mq

(
cos

2πm

p

q∑
l=1

cos
2πl

q
− sin

2πm

p

q∑
l=1

sin
2πl

q

)

+

q∑
l=1

l

(
cos

2πl

q

p−1∑
m=0

cos
2πm

p
− sin

2πl

q

p−1∑
m=0

sin
2πm

p

)
= 0

in force of

p−1∑
m=0

sin
2πm

p
=

p−1∑
m=0

cos
2πm

p
=

q∑
l=1

sin
2πl

q
=

q∑
l=1

cos
2πl

q
= 0

as desired.
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5.3 Multiplicative Order and Primitive Roots

Problem 5.15 (O. Izhboldin, 2019 Belarus Team Selection Test 2.3, from AoPS). 1019
stones are placed into two non-empty boxes. Each second Alex chooses a box with an
even amount of stones and shifts half of these stones into another box. Prove that for
each k, 1 ≤ k ≤ 1018, at some moment there will be a box with exactly k stones.

Solution (of user Pathological from AoPS). Note that 1019 is prime and 1019−1
2

= 509
is prime as well.

Let b1, b2 be variables which correspond to the number of stones in the two boxes.
Observe that b1+b2 = 1019 at all times. Now, notice that every move halves each of b1, b2
modulo 1019. In other words, if (b1, b2) are turned into (b′1, b

′
2) after Alex does his shifting,

then we have 1019 | b1−2b′1, b2−2b′2. With this observation, it would suffice to prove that 2
is either a primitive root modulo 1019 or is the square of the primitive. This is equivalent
to ord1019(2) ∈ {509, 1019}, and so we just need to show that ord1019(2) /∈ {1, 2}. However,
this is obvious since 1019 ∤ 21 − 1, 22 − 1.

Problem 5.16 (Brazilian Cono Sur Training 2013, from AoPS). Prove that there are
infinitely many primes p, q such that p | 2q−1 − 1 and q | 2p−1 − 1.

Solution (of user Al3jandro0000 from AoPS). Consider a prime divisor p of 22n+1. We
have 22

n+1 ≡ 1 (mod p) and ordp(2) = 2n+1 since 22
n ≡ −1 (mod p). So p− 1 = 22

n+2
x.

Similarly considering a prime divisor q of 22n+1
+ 1 we get q − 1 = 2n+2y. Therefore

2q−1 = 22
n+2y ≡ 1 mod p

2p−1 ≡ 22
n+2x ≡ 1 mod q.

Problem 5.17 (from AoPS). Show that primitive roots do not exist modulo any number
of form pq where (p, q) are distinct odd primes.

Solution (of user Tintarn from AoPS). By Fermat, any element has order dividing p−1
modulo p and order dividing q−1 modulo q, hence order dividing lcm(p−1, q−1) modulo
pq. But since p − 1 and q − 1 are both even, this lcm is strictly less than the product
(which would be the order a primitive root would need to have).

5.4 Inequalities

Problem 5.18 (Israeli training 2024, from AoPS). Let {a1, a2, ..., an} ⊂ N, n ≥ 2 and
gcd(a1, a2, ..., an) = 1. Prove that:

lcm(a1, a2, ..., an) ≥ n−1
√
a1a2...an.

Solution (of user RagvaloD from AoPS). Let lcm(a1, a2, ..., an) = d. We want to prove

dn−1 ≥ a1a2...an or
d

a1
· d

a1
. . .

d

an
≥ d.

Every d
ai

is integer and both numbers d and d
a1
· d
a2
. . . d

an
have the same prime divisors

so it is enough to compare degrees of prime divisors of these two numbers.
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Let p | d. Then exists ai with p ∤ ai so p | d
ai

and

νp

(
d

a1
· d

a2
. . .

d

an

)
= νp

(
d

ai

)
+ νp

(
d

a1
· . . . d

ai−1

· d

ai+1

· . . . d

an

)
= νp(d) + νp

(
d

a1
· . . . d

ai−1

· d

ai+1

· . . . d

an

)
≥ νp(d).

So for every p it is true that νp(d) ≤ νp(
d
a1

· d
a2

· . . . d
an
) and so d

a1
· d
a2

· . . . d
an

≥ d.
Equality is possible for the next construction: let p1, p2, ..., pn be different prime

numbers and P = p1p2, ...pn; then choose ai =
P

pi
. Or for the construction a1 = 1, a2 =

a3 = · · · = an.

Problem 5.19 (Daniel Liu, 2017 ELMO P1, from AoPS). Let a1, a2, . . . , an be positive
integers with product P, where n is an odd positive integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)
n.

Solution (of user MSTang from AoPS). Let d = gcd(a1, . . . , an), and write ak = dbk
for positive integers b1, . . . , bn with gcd(b1, . . . , bn) = 1. Then

gcd(an1 + P, . . . , ann + P ) = dn gcd(bn1 +Q, . . . , bnn +Q)

where Q = b1b2 · · · bn. Hence it suffices to show

D := gcd(bn1 +Q, . . . , bnn +Q) ≤ 2.

To do this, write
bn1 ≡ bn2 ≡ . . . ≡ bnn ≡ −Q (mod D).

Suppose some prime p divides both D and Q. Then

bn1 ≡ bn2 ≡ . . . ≡ bnn ≡ −Q ≡ 0 (mod p)

so p | b1, b2, . . . , bn, contradicting gcd(b1, . . . , bn) = 1. Thus gcd(D,Q) = 1. But

Qn = bn1b
n
2 . . . b

n
n ≡ (−Q)n (mod D)

so D | 2Qn (since n is odd). This is enough to force D | 2, i.e. D ≤ 2, as desired.

Problem 5.20 (Polish Mathematical Olympiad Finals 2017, Problem 3, from AoPS).
Let n be a positive integer, and a1, a2, . . . , an be positive integers such that a1 < a2 <
· · · < an < 2a1. If m is the number of distinct prime factors of a1a2 · · · an, then prove
that

(a1a2 . . . an)
m−1 ≥ (n!)m

Solution (from AoPS). Write ai = pki · bi where p ∤ bi for a prime divisor p of a1a2 . . . an.
Then, due to a1 < a2 < . . . < an < 2a1 we get that bi are pairwise distinct. Thus

b1b2 . . . bn ≥ n!

Multiplying such inequalities for each p we get (a1a2 . . . an)
m−1 ≥ (n!)m.
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Problem 5.21 (from AoPS). Consider k natural numbers a1, a2, . . . ak such that 1 <
a1 < a2 < . . . < ak < n (n ∈ N) and [ai, aj] > n, for any i ̸= j ≤ k. Prove that

1

a1
+

1

a2
+ . . .+

1

ak
< 2

Solution (of user jgnr from AoPS). The multiples of ais not exceeding n are distinct
because [ai, aj] > n,∀i ̸= j ≤ k. Hence we get⌊

n

a1

⌋
+

⌊
n

a2

⌋
+ . . .+

⌊
n

ak

⌋
< n

n

a1
− 1 +

n

a2
− 1 + . . .+

n

ak
− 1 < n

n

a1
+

n

a2
+ . . .+

n

ak
< n+ k < 2n

1

a1
+

1

a2
+ . . .+

1

ak
< 2.

Remark 5.21.1 (of user mavropnevma from AoPS). In fact we can even prove
1

a1
+

1

a2
+ · · ·+ 1

ak
<

3

2
. The set S = {a1, a2, . . . , ak} must be such that |S| = k ≤ ⌊n/2⌋, since

if larger, by a well-known result of Erdös, one element of S would divide another, and so
their lcm would be too small. So

n
∑
x∈S

1

x
− n

2
≤ n

∑
x∈S

1

x
− |S| =

∑
x∈S

(n
x
− 1
)
<
∑
x∈S

⌊n
x

⌋
≤ n.

Problem 5.22 (China Girls Math Olympiad 2020, day 1 P4, from AoPS). Let p, q be
primes, where p > q. Define t = gcd(p!− 1, q!− 1). Prove that t ≤ p

p
3 .

Solution (of user Anonimous from AoPS). It is obvious that (p!, t) = 1 and it is easy
to check the cases when p ⩽ 7. So consider the case p ⩾ 8.

1. If q <
p

2
, then (q!)2 | p! and

t = gcd(p!− 1− (q! + 1)(q!− 1)) = gcd(p!− (q!)2, q!− 1) = gcd

(
p!

(q!)2
− 1, q!− 1

)
so t < q! and t <

p!

(q!)2
. Hence t3 < p! < pp so t < p

p
3 .

2. If
p

2
⩽ q ⩽

2p

3
then (p− q)! | q!. Then

t = gcd

(
p!

q!
− 1, q!− 1

)
= gcd

(
p!

q!
− q!, q!− 1

)
= gcd

(
p!

q!(p− q)!
− q!

(p− q)!
, q!− 1

)
= gcd

((
p

q

)
− q!

(p− q)!
, q!− 1

)
,
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(
p

q

)
< 2p ⩽ p

p
3 ,

q!

(p− q)!
= (p− q + 1) · · · (q − 1)q < p2q−p ⩽ p

p
3 ,

so t ⩽

∣∣∣∣(pq
)
− q!

(p− q)!

∣∣∣∣ ⩽ p
p
3 .

3. If q >
2p

3
then

t = gcd

(
p!

q!
− 1, q!− 1

)
⩽

p!

q!
= (q + 1) · · · (p− 1)p < p

p
3 .

Problem 5.23 (Chinese TST 2009 6th P1, from AoPS). Let a > b > 1, b is an odd

number, let n be a positive integer. If bn|an − 1, then ab >
3n

n
.

Solution (of user TTsphn from AoPS). Let p be any prime divisor of b. Let d = ordp(a).
Then d | n. By the lifting-the-exponent lemma we have νp(a

n − 1) = νp(a
d − 1) + νp(

n
d
).

We have pn | an − 1 so νp(a
d − 1) + νp(n) ≥ n and ad − 1 ≥ pn

n
≥ 3n

n
. On the other hand,

d ≤ φ(p) = p− 1 whence ab ≥ ap > ad − 1 > 3n

n
.

5.5 Number Bases and Digits

Problem 5.24 (from AoPS). For each positive integer n, let an denote the number of
divisors of n that end in 1 or 9, and let bn denote the number of divisors of n that end in
3 or 7. Prove that an ≥ bn for all positive integers n.

Solution (of user rrrMath from AoPS). We may assume that n is coprime to 10 because
any factor divisible by 2 or 5 cannot end in 1, 3, 7, 9 so dividing out all powers of 2 and 5
does not change an and bn. Now we prove by induction of the number of distinct prime
factors of n.

For prime power pr satisfying p ≡ ±1 (mod 10) and gcd(p, n) = 1 every divisor of
prn is a power of p times a divisor of n, but that power of p can only change the sign
mod 10 which does not affect whether it is counted towards an or bn therefore

aprn = (r + 1) an, bprn = (r + 1) bn.

Then the induction hypothesis immediately proves our claim.
For p ≡ ±3 (mod 10) it is a bit more complicated. For the factor pkd where 0 ≤ k ≤

r, d | n if k is even it is counted towards the same place d is but if k is odd it is counted
towards the other set giving us

aprn =

⌈
r + 1

2

⌉
an +

⌊
r + 1

2

⌋
bn, bprn =

⌈
r + 1

2

⌉
bn +

⌊
r + 1

2

⌋
an.

So induction still works. Base case n = 1 is trivial so we are done.
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Problem 5.25 (Balkan MO Shortlist 2016 C1, from AoPS). Let positive integers K and
d be given. Prove that there exists a positive integer n and a sequence of K positive
integers b1, b2, . . . , bK such that the number n is a d-digit palindrome in all number bases
b1, b2, . . . , bK .

Solution (of user Aryan-23 from AoPS). Consider a huge n. We claim that the number
x = (n!)d−1 works. To see this , we prove that x can be written as a d-digit palindrome

for each base
n!

i
− 1 with 1 ≤ i < n . Indeed, we claim that base

n!

k
− 1 representation

of x is

x =
d−1∑
i=0

kd−1

(
d− 1

i

)(
n!

k
− 1

)i

.

Then clearly x is a palindrome. Also the fact that n is huge ensures that all the

kd−1

(
d− 1

i

)
<

n!

k
− 1. Now we prove the representation:

kd−1

d−1∑
i=0

(
d− 1

i

)(
n!

k
− 1

)i

= kd−1

(
n!

k
− 1 + 1

)d−1

= (n!)d−1.

5.6 Diophantine Equations

Problem 5.26 (Indian TST 2019 Practice Test 1 P3, from AoPS). Let n ≥ 2 be an
integer. Solve in reals:

|a1 − a2| = 2|a2 − a3| = 3|a3 − a4| = · · · = n|an − a1|.

Solution (of user TheDarkPrince from AoPS). If all ai are equal, we get an obvious
solution. Assume the otherwise. The problem statement is nothing but

±1

1
± 1

2
± . . .± 1

n
= 0.

Pick a prime p between n
2

and n (possible by Bertrand’s postulate). We will have p |
1 · 2 · . . . · (p− 1) · (p+ 1) · . . . n. Therefore n ≥ 2p, which is false. So the only solution is
when a1 = a2 = . . . = k for some constant k.

Problem 5.27 (IMO ShortList 2002 N1, from AoPS). What is the smallest positive
integer t such that there exist integers x1, x2, . . . , xt with

x3
1 + x3

2 + . . . + x3
t = 20022002 ?

Solution (of user Ilthigore from AoPS). Answer: t = 4 is the minimum.
Consider the equation modulo 9. Obviously 3|xi ⇒ x3

i ≡ 0 (mod 9). If 3 and xi

are coprime, ϕ(9) = 6, so (xi
3)2 ≡ 1 mod 9 by Euler’s Theorem. Therefore xi

3 ≡ −1
or 1 mod 9. However, 20022002 ≡ 42002 ≡ 44 ≡ 4 mod 9, so if t < 4, LHS ̸= RHS.
Therefore, t ≥ 4.

However, t = 4 is achievable using the values (10 ∗ 2002667)3 + (10 ∗ 2002667)3 +
(2002667)3 + (2002667)3 = 20022002, so this must be our minimum achievable value.
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Problem 5.28 (of user Dattier from AoPS). Find all (x, y) ∈ Z2 with

x3y3 − 2x2y2 + x2 − y3 + xy = 0.

Solution (of user lbh_qys from AoPS). If xy = 0, then x = y = 0. The following
assumes xy ̸= 0.

By considering mod y2, we obtain y2 | x(x+y). Now, for any p | y, if vp(x) < vp(y),
then vp(x + y) = vp(x) < vp(y), thus vp(x(x + y)) < 2vp(y), which contradicts the
divisibility, hence vp(x) ≥ vp(y), implying y | x.

Now, suppose x = ty, then t3y4− 2t2y2+ t2− y+ t = 0, thus by considering mod t,
we obtain t | y, and further assume y = st, then

s− t = (t3s2 − 1)2

Since xy ̸= 0, it follows that st ̸= 0.
If |st| = 1, then only s = t = 1 satisfies the equation, thus x = y = 1.
When |st| ≥ 2, we have |t3s2 − 1| ≥ |t3s2| − 1 ≥ 2|st| − 1 ≥ |s|+ |t| >

√
s− t, which

is impossible.
In conclusion, the solutions are (0, 0), (1, 1) .

5.7 Other Problems

Problem 5.29 (from AoPS). Let m be a positive integer (m ⩾ 3). Prove that mm − 1
has at least one prime divisor p such that p ≡ 1 mod m.

Solution (of user hyay from AoPS). By Zsigmondy’s theorem, there exists a prime
divisor p of mm − 1 that does not divide mk − 1 for any positive integer k < m. This
means ordp(m) = m, and since p | mp−1 − 1, we have ordp(m) = m | p− 1, which is what
we wanted.

Problem 5.30 (Iran 2022, from AoPS). π(n) is the number of primes that are not
bigger than n. For n = 2, 3, 4, 6, 8, 33, . . . we have π(n) | n. Do there exist infinitely
many integers n that π(n) | n?

Solution (from the post of user harazi on AoPS). We prove that for any m ≥ 2 we can
find n such that mπ(n) = n.

Take m > 1. Since π(mk)/mk has limit 0 when k tends to infinity, there is a maximal
k such that π(mk)/mk ≥ 1/m (k = 1 verifies this inequality). If we have equality, we are
done. Otherwise, π(mk) > k. Since k is the maximal, we have π(mk +m)/(mk +m) <
1/m and thus k ≥ π(km+m) ≥ π(km) > k, contradiction.

Problem 5.31 (from AoPS). Suppose that all positive divisors of the natural number n
(including 1 and n) can be divided into disjoint pairs in such a way that the sum of the
numbers in each pair is a prime number. Prove that the prime numbers obtained in this
way are different from each other.
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Solution (of user axolotlx7 from AoPS). Let n = pa11 pa22 . . . parr be the canonical repre-
sentation of n. For each pi there are

ai
ai + 1

d(n) divisors of n divisible by pi, and since

each divisor of n divisible by p must be paired with one which is not divisible by pi, we

have
ai

ai + 1
d(n) ≤ 1

2
d(n), so we must have ai = 1. Note that equality holds in this case,

so two divisors of n not divisible by pi cannot be paired with each other. This implies d
is paired with n/d. For any d1 < d2 ≤

√
n one can check that d1 + n/d1 > d2 + n/d2 so

the sums must all be pairwise distinct.

Problem 5.32 (Ashwin Sah, USA Winter Team Selection Test #1 for IMO 2018, from
AoPS). Let n ≥ 2 be a positive integer, and let σ(n) denote the sum of the positive
divisors of n. Prove that the nth smallest positive integer relatively prime to n is at least
σ(n), and determine for which n equality holds.

Solution (of user blackbluecar from AoPS). Let ω(n) denote the number of positive
integers k where k ≤ σ(n) and gcd(k, n) = 1. It is sufficient to show that ω(n) ≤ n.
Indeed, notice that the number of positive integers in the interval [m,m+ℓ−1] relatively
prime to ℓ is exactly φ(ℓ). Now split up the interval [1, σ(n)] into the intervals

k−1⋃
i=0

[(
k−1∑
x=1

dx

)
+ 1,

k∑
y=1

dy

]

where d0 = 0 and d1 < d2 < · · · < dk are the divisors of n. Now, notice that if

r ∈

[(
m−1∑
x=1

dx

)
+ 1,

m∑
y=1

dy

]
:= I

and gcd(r, n) = 1 then gcd(r, dm) = 1. But the number of integers in I relatively prime
to dm is φ(dm). So,

ω(n) ≤
k∑

i=1

φ(di) = n

as desired. Equality holds if

[(
m−1∑
x=1

dx

)
+ 1,

m∑
y=1

dy

]
has exactly φ(dm) elements relatively

prime to n for every m ≤ k. So, n can only have one distinct prime divisor, implying
n = pα which clearly works.

Problem 5.33 (from AoPS). Let p be a fixed prime. Prove that, there are infinitely
many natural number n that are not expressible as pab+ a+ b for any natural numbers
a and b.

Solution (of user AleMM from AoPS). By Dirichlet’s Theorem, there are infinitely
many n such that pn + 1 = q where q is a prime number, so take those n. If n =
pab+ a+ b =⇒ pn = p2ab+ pa+ pb =⇒ pn+1 = p2ab+ pa+ pb+1 = (pa+1)(pb+1),
contradiction since a, b > 0.
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Problem 5.34 (Walther Janous, 2022 Austrian Federal Competition For Advanced Stu-
dents, Part 2 p4, from AoPS). Decide whether for every polynomial P of degree at least
1, there exist infinitely many primes that divide P (n) for at least one positive integer n.

Solution (of user NumberzAndStuff). Answer: the statement is true.
Let P ∈ Z[x], deg(P ) = k ≥ 1 Assume there exist finitely many such primes

p1, p2, . . . , pr. Define Q :=
∏r

i=1 pi. Let am denote the coefficient of lowest degree in
P such that am ̸= 0. Now consider:

P (amQ
x) =

k∑
i=m

ai · (amQx)i = (am)
m+1Qxm ·

(
1 +

k∑
i=m+1

aia
i−m−1
m Qx(i−m)

)
.

The right term is arbitrarily large as we choose x arbitrarily large and also coprime to Q
thus it must have some other new prime factor.

Problem 5.35 (Iran Third Round MO 1997, Exam 3, P6, from AoPS). Let Qn be the
set of all points in Rn with rational coordinates. For A,B in Qn, we can move from A to
B if the distance AB is 1. Prove that every point in Qn can be reached from every other
point in Qn by a finite sequence of moves if and only if n ≥ 5.

Solution (of user pbornsztein from AoPS). Consider Qn as a graph whose vertices A
and B are joined by an edge iff AB = 1. The problem is to prove that Qn is connected
iff n ≥ 5.

First, we assume that n ≥ 5. Clearly, it suffices to prove that each vertex is connected
with the origin O by some path. Moreover, if A is connected with O then so is its reflection
A′ with respect to O.

Let (e1, . . . , en) be an orthonormal basis in Rn. Then, if Mi and Mj are such that
the vectors OMi = riei and OMj = rjej where ri and rj are rational numbers, and such
that O is connected to Mi and Mj then using translation with vector OMi, we deduce
that Mj is connected to the point P such that MjP = riei. By transitivity, it follows
that O is connected to P , and vector OP = riei + rjej. Thus, it suffices to prove that O
is connected to each of the points Ai where the coordinates of Ai are 0 except the i-th
which is 1/p for some positive integer p. WLOG it suffices to prove that O is connected
to M(1/p, 0, 0, ..., 0).

But, from a well-known theorem of Lagrange, each positive integer is the sum of 4
squares. Then, there exists integers a, b, c, d such that 4p2 − 1 = a2 + b2 + c2 + d2. Hence

1 =
1

(2p)2
+

a2

(2p)2
+

b2

(2p)2
+

c2

(2p)2
+

d2

(2p)2

which ensures that O is connected to

A

(
1

2p
,
a

2p
,
b

2p
,
c

2p
,
d

2p

)
and B

(
1

2p
,− a

2p
,− b

2p
,− c

2p
,− d

2p

)
.

Using translation with vector OA, we deduce that A is connected to M , and using
transitivity, it follows that O is connected to M . Thus Qn is connected.

Now, suppose that n = 4. We will prove that Q4 is not connected, and more precisely
that it has an infinite number of connected components.
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Let

Ap =
{( x

2pd
,
y

2pd
,
z

2pd
,

t

2pd

) ∣∣∣ p = 0 or p = 1, x, y, z, t are integers not all even

if p = 1, d is an odd integer, gcd(x, y, z, t) = 1
}

and for p ≥ 2

Ap =
{( x

2pd
,
y

2pd
,
z

2pd
,

t

2pd

) ∣∣∣ d is an odd integer and gcd(x, y, z, t) = 1
}
.

Note that the fractions are not supposed to be irreducible. Moreover,
⋃
Ap = Q4, the

Ap’s are pairwise disjoint and if M is in Ap and M ′ is in Aq for p < q then the point N
such that vector ON = MM ′ is in Aq.

Lemma 5.35.1. If p ≥ 2 and M is in Ap, then (O,M) is not an edge.

Proof. Suppose that OM = 1, then with the above notations x2+y2+z2+t2 = (2pd)2 ≡ 0
(mod 8). But, at least one of the numbers x, y, z, t is odd, say x. Then x2 ≡ 1 (mod 8),
thus y2 + z2 + t2 ≡ 7 (mod 8). Since each square is equal to 1 or 0 or 4 mod 8, it is easy
to see that the sum of three squares is never equal to 7 mod 8. Contradiction.

Let p, q be integers such that 1 ≤ p < q. We will prove that Ap and Aq belong to
distinct connected components, which will prove the claim above.

Suppose that there are A ∈ Ap and B ∈ Aq which are connected by some path. Then,
there exist rational points M1, . . . ,Mk, such that A = M1, B = Mk and MiMi+1 = 1 for
each i. Moreover, for each i there exists an integer pi such that Mi is in Api .

Let m = max{pi | i = 1, . . . , k}. Then m ≥ pk = q ≥ 2. Let j = min{i | pi = m}.
Then j ≥ 2 (since p1 = p < q ≤ m), and then pj−1 < pj = m. Let C be the point such
that vector OC = Mj−1Mj. From above, C is in Am with m ≥ 2 and OC = 1, which
contradicts the lemma, and we are done.

Now suppose that n ≤ 4. The proof above may be adapted word for word to prove
that Q4 has an infinite number of connected components. The key is that the sum of at
most 3 squares is never equal to 7 mod 8.

Problem 5.36 (Russian Regional Olympiad 2010 Grade 9 P8, from AoPS). For every
positive integer n, let Sn be the sum of the first n prime numbers: S1 = 2, S2 = 2 + 3 =
5, S3 = 2 + 3 + 5 = 10, etc. Can both Sn and Sn+1 be perfect squares?

Solution (of user e__z from AoPS). Let Sn = x2 and Sn+1 = y2. Let p be the n+ 1th

prime. Then (y − x)(y + x) = y2 − x2 = p since p is a prime. From this follows that

y = x + 1 and 2x + 1 = p. So
(
p− 1

2

)2

should be the sum of the primes smaller than

p. Notice that the sum of the numbers from 1 to p− 2 (p− 1 is not prime for p ̸= 3 ) is

at most x2 ≤ (p− 2)(p− 1)

2
<

p− 1

2

2

= x2. Hence there is no solution. Rapid check of
small cases shows that S3 does not work.
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Problem 5.37 (Saint-Petersburg Olympiad 2024, 10.4, from AoPS). Consider all possi-
ble quadratic trinomials of the form x2 + ax+ b, where a and b are positive integers not
exceeding some positive integer N . Prove that the number of pairs of such trinomials
having a common root does not exceed N2.

Solution (of user NO_SQUARES from AoPS). Let t be a common root of some pair
of trinomials x2 + ax+ b and x2 + cx+ d, i.e

t2 + at+ b = 0 = t2 + ct+ d ⇒ t =
d− b

a− c
∈ Q ⇒ t ∈ Z

since the leading coefficients of the trinomials equal to 1. Also note that |t| ⩽ N and
t < 0 (since x2 + ax+ b does not have positive roots). Now we will prove the following

Lemma 5.37.1. If t is an integer such that −N ⩽ t ⩽ −1 then there are at most |N/t|
ordered pairs (a, b) of positive integers not exceeding N such that t2 + at+ b = 0.

Proof. Let k = −t, so k2 − ak + b = 0. Note that it implies k | b and so b = kℓ for some
ℓ ∈ Z+ and ℓ ⩽ N/k, because N ⩾ b = kℓ. Then k − a+ ℓ = 0 ⇒ a = k + ℓ, so there are
at most N/k possible variations for a; note that b is uniquely determined by a.

Now we are fully ready to solve the problem. Knowing that all the common roots are
minus positive integers no more than N and using the lemma, we claim that the number
of pairs of trinomials having a common root does not exceed

n∑
k=1

(
N/k

2

)
<

1

2

n∑
k=1

(
N

k

)2

=
1

2
N2

(
1

12
+

1

22
+

1

32
+ . . .

)
<

1

2
N2 · 2 = N2.

5.8 Unsolved Number Theory

Problem 5.38 (from AoPS). Let f(x) be a non-constant polynomial with integer coeffi-
cients and n, k be natural numbers. Show that there exist n consecutive natural numbers
a, a + 1, . . . , a + n − 1 such that the numbers f(a), f(a + 1), . . . , f(a + n − 1) all have
at least k prime factors. (We say that the number pα1

1 · · · pαs
s has α1 + . . . + αs prime

factors.)

Problem 5.39 (from AoPS). Let n be a positive integer. Denote the multiples of the
numbers n+ 1, n+ 2, . . . , 2n located in the interval (n, n2] by n1, . . . nt, where n1 < n2 <
· · · < nt. Prove that there exist constants c > 0 and α < 1 independent of n, such that

max
j=2,...,t

(nj − nj−1) < cnα.

Problem 5.40 (Paul Erdős, from AoPS). Let a1 < a2 < . . . be a sequence of integers
such that gcd(ai, aj) = 1 and ai+2 − ai+1 ≥ ai+1 − ai . Prove that∑

i

1

ai
< ∞.
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Problem 5.41 (Paul Erdős, AMM, from AoPS). If n is an integer greater than 1 , let
P (n) denote the largest prime factor of n . Prove that n | P (n)! for almost all n , i.e.
prove that if

S(x) = {n ≤ x : n ∤ P (n)!}

then
lim
x→∞

|S(x)|
x

= 0.

Problem 5.42 (from AoPS). Show that there is a (not too large) integer N such that,
for every integer n ≥ N , you can form a square by multiplying together distinct integers
between n2 and (n+1)2. For instance, the product 27 · 28 · 30 · 32 · 35 = 50402 shows that
you can do it for n = 5. But you can’t do it for n = 6, so N has to be at least 7.
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6 Algebraic Inequalities

6.1 Convenient Substitutions

Problem 6.1 (from AoPS). Let a, b, c be reals. Prove that:∑ (a+ b)2

(a− b)2
≥ 2.

Solution (of user m4thbl3nd3r from AoPS). Let
a+ b

a− b
= x,

b+ c

b− c
= y and

c+ a

c− a
= z,

thus xy+yz+zx = −1. We shall rewrite our inequality as x2+y2+z2 ≥ −2(xy+yz+zx)
or (x+ y + z)2 ≥ 0 which is true.

Problem 6.2 (from AoPS). Given 1 ≤ a, b, c ≤ 2 satisfy a+b+c = 4. Find the maximum
of P = a2b+ b2c+ c2a.

Solution (of user arqady from AoPS). For
5

3
, b =

4

3
and c = 1 we obtain the value

193

27
.

We will prove that it is the maximal value.

Indeed, let a =
2x+ y + z

x+ y + z
and b =

2y + x+ z

x+ y + z
, where x, y and z be non-negative

numbers such that x+ y + z ̸= 0. Thus, c =
2z + x+ y

x+ y + z
and we need to prove that

27
∑
cyc

(2x+ y + z)2(2y + x+ z) ≤ 193(x+ y + z)3.

Denoting S = x+ y + z and expanding we find its equivalent form

27
∑
cyc

x2y ≤ 4(x+ y + z)3

which is Problem 6.11.

Problem 6.3 (of user anhduy98 from AoPS). Given four real numbers a, b, c, k ≤ 1
satisfying a+ b+ c = 3k. Prove that

a2 + b2 + c2 + 2abc+ 1 ≥ 2k3 + 3k2 + 1.

Solution (of user Nguyenhuyen_AG from AoPS). Let a = 1 − x, b = 1 − y, c =
1− z, k = 1−m, where x, y, z,m are non-negative real numbers. Then x+ y + z = 3m,
and the inequality becomes

2(1− x)(1− y)(1− z) + (1− x)2 + (1− y)2 + (1− z)2 ⩾ 2(1−m)3 + 3(1−m)2,

equivalent to

(x+ y + z)2 ⩾ 2xyz + 4(x+ y + z)− 2m3 + 9m2 − 12m.

Simplify to
xyz ⩽ m3.

It’s true because
xyz ⩽

(x+ y + z)3

27
= m3.
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Problem 6.4 (from AoPS). For x, y, z ∈ R, find the minimum value of(
x

2x− y − z

)2

+

(
y

2y − z − x

)2

+

(
z

2z − x− y

)2

Solution (from AoPS). Let t =
x+ y + z

3
, a =

2x− y − z

3
, b =

2y − z − x

3
, c =

2z − x− y

3
. Then, using a+ b+ c = 0, our expression becomes

∑(
a+ t

3a

)2

=
1

9

(∑ 1

a2
t2 + 2

∑ 1

a
t+ 3

)
=

1

9

(∑ 1

a
t+ 1

)2

+
2

9
≥ 2

9
.

For (x, y, z) = (1, 1,−8) this minimum is achieved.

Problem 6.5 (from AoPS). Minimize

f(x, y, z) =
1

(x+ 1)(x+ 2)
+

1

(y + 1)(y + 2)
+

1

(z + 1)(z + 2)

where x, y, z > 0 and xyz = 1.

Solution (of user Nguyenhuyen_AG from AoPS). For x = y = z = 1 we get

f(x, y, z) =
1

2
. We will show that

∑ 1

(x+ 1)(x+ 2)
≥ 1

2
.

Substitute x =
ab

c2
, y =

bc

a2
, z =

ca

b2
. The inequality becomes

∑ c4

(c2 + ab)(2c2 + ab)
≥ 1

2
.

After using the Cauchy-Bunyakovsky-Schwarz inequality we need to prove

2(a2 + b2 + c2)2 ⩾
∑

(c2 + ab)(2c2 + ab),

or
a2b2 + b2c2 + c2a2 ⩾ abc(a+ b+ c).

6.2 Rolle’s Theorem

Problem 6.6 (of user arqady from AoPS). Let a1, a2,..., a8 be a real numbers such that
8∑

i=1

ai ≥ 0 and
∑

1≤i<j<k≤8

aiajak ≥ 0. Prove that:

64
8∑

i=1

a3i ≥

(
8∑

i=1

ai

)3

.
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Solution (of user booth from AoPS). Let
8∑

i=1

ai = 8u,
∑

1≤i<j≤8

aiaj = 28v2 (v2 can be

negative) and
∑

1≤i<j<k≤8

aiajak = 168w3. Then we need to prove that

64(512u3 − 672uv2 + 168w3) ≥ 512u3

or 3u3 − 4uv2 + w3 ≥ 0. By Rolle’s theorem

(
8∏

i=1

(x− ai))
′′′′′ = 6720(x3 − 3ux2 + 3v2x− w3)

has three real roots. Let 3u = x + y + z, 3v2 = xy + yz + zx and w3 = xyz. If v2 ≤ 0,
the inequality is obvious. Assume that v2 ≥ 0. Since u, v2, w3 ≥ 0 by positivity theorem
x, y, z ≥ 0. So our inequality is just Schur.

6.3 Other Inequalities

Problem 6.7 (Fedor Petrov, 239 MO, from AoPS). Prove that for any four nonnegative
reals a, b, c, d, the following inequality holds:

(ab)
1
3 + (cd)

1
3 ≤ [(a+ c+ b) (a+ c+ d)]

1
3 .

Solution (of user Fedor Petrov from AoPS). We have

ab

(a+ c+ b)(a+ c+ d)
=

(
a

a+ c

)(
a+ c

a+ c+ d

)(
b

a+ c+ b

)
And analogously,

cd

(a+ c+ b)(a+ c+ d)
=

(
c

a+ c

)(
a+ c

a+ c+ b

)(
d

a+ c+ d

)
So by AM-GM,

3

(
ab

(a+ c+ b)(a+ c+ d)

) 1
3

≤ a

a+ c
+

a+ c

a+ c+ d
+

b

a+ c+ b

And

3

(
cd

(a+ c+ b)(a+ c+ d)

) 1
3

≤ c

a+ c
+

a+ c

a+ c+ b
+

d

a+ c+ d

Summing up the last two inequalities gives the desired result.

Problem 6.8 (from AoPS). Given 2019 reals a1, a2, . . . , a2019 ≥ −1 such that
2019∑
i=1

ai = 0.

Find the minimum of
2019∑
i=1

a3i .
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Solution (of user m4thbl3nd3r from AoPS). Note that (ai + 1)
(
ai − 1

2

)2
≥ 0 where

i = 1, 2, . . . 2019, which gives

a3i ≥
3

4
ai −

1

4
.

Thus
2019∑
i=1

a3i ≥
3

4

2019∑
i=1

ai −
2019

4
=

−2019

4
.

Equality occurs when exactly 673 of ais are −1 and the others are 1
2
.

Problem 6.9 (of user sqing from AoPS). Let a, b, c ≥ 0. Prove that

a2 + b2 + c2 + kabc− 2bc− 2ca− 2ab ≥ − 4

k2
.

Solution (of user anhduy98 from AoPS). By AM-GM and Schur

a2+b2+c2+kabc+
4

k2
≥ a2+b2+c2+3 3

√
(abc)2 ≥ a2+b2+c2+

9abc

a+ b+ c
≥ 2(ab+bc+ca).

Problem 6.10 (of user Nguyenhuyen_AG from AoPS). Let a, b, c be non-negative
real number. Prove that

(ab+ bc+ ca)

[
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2

]
⩾

12(a− b)2(b− c)2(c− a)2

(a+ b)2(b+ c)2(c+ a)2
.

When does equality hold?

Solution (of user arqady from AoPS). Let a = min{a, b, c}, b = a + u and c = a + v.
Thus, by AM-GM

(ab+ ac+ bc)
∏
cyc

(a+ b)2
∑
cyc

1

(a+ b)2
= (ab+ ac+ bc)

∑
cyc

(a2 + ab+ ac+ bc)2 ≥

≥ uv(u2v2 + (u2 + uv)2 + (v2 + uv)2) = uv(u2 + uv + v2)2 = uv((u− v)2 + 3uv)2 ≥

≥ uv
(
2
√

(u− v)2 · 3uv
)2

= 12(u− v)2u2v2 = 12(a− b)2(a− c)2(b− c)2.

Equality holds iff a = 0 and b2 + c2 = 5bc and for its permutations.

Problem 6.11 (Canada MO 1999, problem 5, from AoPS). Let x, y, and z be non-
negative real numbers satisfying x+ y + z = 1. Show that

x2y + y2z + z2x ≤ 4

27

and find when equality occurs.

55

https://artofproblemsolving.com/community/c6h3420043p32986150
https://artofproblemsolving.com/community/c6h3428638p33027118
https://artofproblemsolving.com/community/c6h3428638p33032964
https://artofproblemsolving.com/community/c6h3427273p33011365
https://artofproblemsolving.com/community/c6h3427273p33012942
https://artofproblemsolving.com/community/c6h216p768


Solution (of user mudok from AoPS). WLOG assume that y = mid(x, y, z) i.e. (y −
x)(y − z) ≤ 0 Hence z(y − x)(y − z) ≤ 0. Using this we have

x2y + y2z + z2x ≤ x2y + xyz + z2y ≤ x2y + 2xyz + z2y = y(x+ z)2 = y(1− y)2

By AM-GM

y(1− y)2 =
4

27
· 27y · 1− y

2
· 1− y

2
≤ 4

27
.

Equality holds iff (x, y, z) =

(
2

3
,
1

3
, 0

)
or cyclic permutations.

Problem 6.12 (of user sqing from AoPS). Let a, b, c ≥ 0 and a2 + b2 + c2 ≤ 3. Prove
that

ab2 + bc2 + ca2 − abc ≤ 2.

Solution (of user m4thbl3nd3r from AoPS). WLOG, assume that b = mid(a, b, c).
Thus a(a− b)(c− b) ≤ 0 or

ab2 + bc2 + ca2 − abc ≤ b(a2 + c2).

By AM-GM

b(a2 + c2) =
1

2
· 2b · (a2 + c2) ≤ 1

2
· (b2 + 1) · (a2 + c2) ≤ 1

2
· (1 + a2 + b2 + c2)2

4
= 2.

Problem 6.13 (Brazilian IMO test 2013, from AoPS). For positive reals a, b, c prove
that √

a2 + bc+
√
b2 + ca+

√
c2 + ab ≤ 3

2
(a+ b+ c).

Solution (of user NaPrai from AoPS). Due to the symmetry, we may assume WLOG
that a ≥ b ≥ c. Therefore,

√
a2 + bc+

√
b2 + ca+

√
c2 + ab ≤

√
a2 + ca+

√
b2 + ca+

√
bc+ ab.

By using the Power-mean inequality and the AM-GM inequality respectively, we have
√
a2 + ca+

√
b2 + ca+

√
bc+ ab ≤

√
a2 + ca+

√
2(b2 + ca+ bc+ ab)

=
√

a(a+ c) +
√

(2b+ 2c)(a+ b)

≤ a+ (a+ c)

2
+

(2b+ 2c) + (a+ b)

2

=
3

2
(a+ b+ c).

Problem 6.14 (of user Nguyenhuyen_AG from AoPS). For a, b, c ≥ 0 Prove:

a(b+ c)

b2 + bc+ c2
+

b(c+ a)

c2 + ca+ a2
+

c(a+ b)

a2 + ab+ b2
≥ a2b+ b2c+ c2a

ab2 + bc2 + ca2
+

ab2 + bc2 + ca2

a2b+ b2c+ c2a
.
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Solution (of user mudok from AoPS). Let m = a2b + b2c + c2a, n = ab2 + bc2 + ca2.
Then

ab

b2 + bc+ c2
− a2b

n
=

abc(a− b)(a− c)

n(b2 + bc+ c2)
,

ac

b2 + bc+ c2
− a2c

m
=

abc(a− b)(a− c)

m(b2 + bc+ c2)
.

So we have∑
cyc

(
a(b+ c)

b2 + bc+ c2
− a2b

n
− a2c

m

)
= abc

(
1

m
+

1

n

)∑
cyc

(a− b)(a− c)

b2 + bc+ c2
.

It suffices to prove ∑
cyc

(a− b)(a− c)

b2 + bc+ c2
≥ 0.

WLOG a ≥ b ≥ c. Then by Cauchy-Bunyakovsky-Schwarz

1

a3 − b3
+

1

b3 − c3
≥ 4

a3 − c3
>

1

a3 − c3

as needed.

Problem 6.15 (from AoPS). Let a, b, c > 0. Prove that

b3 + 2abc+ c3

a2 + bc
+

c3 + 2abc+ a3

b2 + ca
+

a3 + 2abc+ b3

c2 + ab
≥ 2(a+ b+ c).

Solution (of user mudok from AoPS). We need to prove∑
cyc

(
b3 + 2abc+ c3

a2 + bc
+ a

)
≥ 3(a+ b+ c)

or
(a3 + b3 + c3 + 3abc)

∑
cyc

1

a2 + bc
≥ 3(a+ b+ c)

which is true because

(a3 + b3 + c3 + 3abc) · 9

a2 + b2 + c2 + ab+ bc+ ca
≥ 3(a+ b+ c)

which follows from Schur:

a3 + b3 + c3 + 3abc ≥ a2b+ b2c+ c2a+ a2c+ c2b+ b2a.

Problem 6.16 (from AoPS). Let a, b, c ∈ R satisfy 1
2
≤ a, b, c ≤ 1. Prove that∣∣∣∣a− b

c
+

b− c

a
+

c− a

b

∣∣∣∣ ≤
(
1−

√
2

2

)2

.
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Solution (of user arqady). Let a ≥ b ≥ c. Then, by AM-GM∣∣∣∣a− b

c
+

b− c

a
+

c− a

b

∣∣∣∣ = a

(
1− b

a

)(
1− c

a

)(1

c
− 1

b

)
≤

≤ 1·
(
1− b

1

)(
1−

1
2

1

)(
1
1
2

− 1

b

)
=

1

2

(
3− 2b− 1

b

)
≤ 1

2

(
3− 2

√
2b · 1

b

)
=

(
1− 1√

2

)2

.

Problem 6.17 (from AoPS). Prove that if a, b, c, d, e ∈ [ 1√
5
,
√
5] then

a− b

b+ c
+

b− c

c+ d
+

c− d

d+ e
+

d− e

e+ a
+

e− a

a+ b
≥ 0.

Solution (of user arqady from AoPS). The inequality is equivalent to∑
cyc

(
a− b

b+ c
+

2

3

)
≥ 10

3
⇐⇒

∑
cyc

3a+ 2c− b

b+ c
≥ 10.

But 3a+ 2c− b ≥ 5√
5
−

√
5 = 0 and

∑
cyc

(3a+ 2c− b) > 0, hence

∑
cyc

3a+ 2c− b

b+ c
=
∑
cyc

(3a+ 2c− b)2

(3a+ 2c− b)(b+ c)

≥

(∑
cyc

(3a+ 2c− b)

)2

∑
cyc

(3a+ 2c− b)(b+ c)
=

16(a+ b+ c+ d+ e)2∑
cyc

(a2 + 4ab+ 3ac)
.

Id est, it remains to prove that

8(a+ b+ c+ d+ e)2∑
cyc

(a2 + 4ab+ 3ac)
≥ 5 ⇐⇒

∑
cyc

(3a2 − 4ab+ ac) ≥ 0

⇐⇒
∑
cyc

(a2 + 4b2 + c2 − 4ab− 4bc+ 2ac) ≥ 0

⇐⇒
∑
cyc

(a− 2b+ c)2 ≥ 0.

Problem 6.18 (from AoPS). Determine the largest real number M such that for any
nonnegative reals a, b, c holds

a3 + b3 + c3 − 3abc ≥ M(a− b)(b− c)(c− a).
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Solution (of user arqady from the same source). Let M > 0 and a = min{a, b, c}, c ≥ b
and b = a+ x, c = a+ y for y ≥ x ≥ 0. Hence,

a3 + b3 + c3 − 3abc ≥ M(a− b)(b− c)(c− a)

⇐⇒ (a+ b+ c)((a− b)2 + (a− c)2 + (b− c)2) ≥ 2M(−x)(x− y)y

⇐⇒ (3a+ x+ y)(x2 − xy + y2) ≥ Mxy(y − x).

Let y ̸= 0. If a = 0 then f(t) = t3 + Mt2 − Mt + 1 ≥ 0, where t = x
y

and 0 ≤ t ≤ 1.

f ′(t) = 3t2 + 2Mt−M so tmin =
−M +

√
M2 + 3M

3
.

f(tmin) ≥ 0 ⇐⇒ 2M3 + 9M2 + 27 ≥ (2M2 + 6M)
√
M2 + 3M

⇐⇒ M4 − 18M2 − 27 ≤ 0

⇐⇒ M ≤
√

9 + 6
√
3.

Id est, a3+ b3+ c3− 3abc ≥
√

9 + 6
√
3(a− b)(b− c)(c−a) for all non-negative a, b and c.

Equality holds for a = 0, b =
−M +

√
M2 + 3M

3
and c = 1, where M =

√
9 + 6

√
3.

Problem 6.19 (from AoPS). Let a, b, c are real numbers . Prove that

(1 + a2)(b− c)2 + (1 + b2)(c− a)2 + (1 + c2)(a− b)2 ≥ 2
√
3|(a− b)(b− c)(c− a)|.

Solution (from AoPS). WLOG a ≤ b ≤ c. Then there exist y ≥ x ≥ 0 such that
b = a+ x, c = a+ y. Then the inequality becomes

f(a) =
(
(y − x)2 + x2 + y2

)
a2+2xy(x+y)a+(y−x)2+x2+y2+2x2y2−2

√
3xy(y−x) ≥ 0.

The minimum of this function is obtained at the point

amin = − xy(x+ y)

2(x2 − xy + y2)

(if x = y = 0 everything is clear so we consider the case y > 0). Thus it suffices to show
that f(amin) ≥ 0. But

f(amin) =

(√
3xy(y − x)− 2(x2 − xy + y2)

)2
2(x2 − xy + y2)

≥ 0

as desired.

Problem 6.20 (from AoPS). Given a positive integer n and positive real numbers
x1, x2, . . . , xn. Prove that

(x1 + 2x2 + . . .+ nxn)
(
x1 +

x2

2
+ . . .+

xn

n

)
≤ (n+ 1)2

4n
(x1 + x2 + . . .+ xn)

2.
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Solution (of user anhduy98 from AoPS). By AM-GM(
n∑

k=1

kxk

)(
n∑

k=1

xk

k

)
=
(n+ 1)2

n

(
n∑

k=1

kxk

n+ 1

)(
n∑

k=1

nxk

k(n+ 1)

)

≤ (n+ 1)2

4n

(
n∑

k=1

(
kxk

n+ 1
+

nxk

k(n+ 1)

))2

=
(n+ 1)2

4n

(
n∑

k=1

(
1− (k − 1)(n− k)

k(n+ 1)

)
xk

)2

≤ (n+ 1)2

4n

(
n∑

k=1

xk

)2

.

Problem 6.21 (2024 Guangdong Middle School Students Mathematics Summer Camp,
from AoPS). Let a1, a2, · · · , an > 0 and a21 + 2a32 + · · ·+ nan+1

n < 1. Prove that

2a1 + 3a22 + · · ·+ (n+ 1)ann < 3.

Solution (of user tait1k27 from AoPS). By AM-GM

kak+1
k +

1

2k+1
≥ k + 1

2
akk

=⇒
n∑

k=1

kak+1
k +

1

2
− 1

2n+1
≥

n∑
k=1

k + 1

2
akk

=⇒ 3

2
>

1

2

n∑
k=1

(k + 1)akk

=⇒
n∑

k=1

(k + 1)akk < 3.

Problem 6.22 (of user lwwwww from AoPS). Let
n∑

i=1

x2
i ≤ 1. Prove that

n∑
i=1

(xi − yi)
2 ≥

∑
1≤i<j≤n

(xiyj − yixj)
2 .

Solution (of user arqady from AoPS). We need to prove that

n∑
i=1

x2
i

n∑
i=1

(xi − yi)
2 ≥

n∑
i=1

x2
i

n∑
i=1

y2i −

(
n∑

i=1

xiyi

)2
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or (
n∑

i=1

xiyi

)2

+
n∑

i=1

x2
i

(
n∑

i=1

(xi − yi)
2 −

n∑
i=1

y2i

)
≥ 0

or (
n∑

i=1

xiyi −
n∑

i=1

x2
i

)2

≥ 0.

Problem 6.23 (from AoPS). For positive reals a, b, c prove that

b+ c√
a2 + bc

+
c+ a√
b2 + ac

+
a+ b√
c2 + ab

> 4.

Solution (of user lbh_qys from AoPS). By Hölder’s and Schur’s inequalities

∑
cyc

b+ c√
a2 + bc

≥

√√√√√ (∑
cyc(b+ c)

)3∑
cyc(b+ c)(a2 + bc)

≥

√
32
∑

cyc a
2(b+ c) + 24abc

2
∑

cyc a
2(b+ c)

> 4.

Problem 6.24 (from AoPS). Let a, b, c > 0, a + b + c ≥ 3 and a2 + b2 + c2 = 2abc + 1.
Prove that

a+ b+ c ≤ 2
√
abc+ 1.

Solution (from the posts of users mudok and arqady on AoPS). We have

(a− bc)2 = (b2 − 1)(c2 − 1),

(b− ca)2 = (c2 − 1)(a2 − 1),

(c− ab)2 = (a2 − 1)(b2 − 1).

Thus a− 1, b− 1, c− 1 have the same sign. If a− 1, b− 1, c− 1 < 0 then a+ b+ c < 3,
contradiction. So a− 1, b− 1, c− 1 ≥ 0. We need to prove that

(a+ b+ c− 1)2 ≤ 4abc ⇐⇒ (a− 1)(b− 1)(c− 1) ≥ 0.

Problem 6.25 (Iran TST 2008, from AoPS). Let a, b, c > 0 and ab+ bc+ ca = 1. Prove
that √

a3 + a+
√
b3 + b+

√
c3 + c ≥ 2

√
a+ b+ c.

Solution (of user can_hang2007 from AoPS). Applying Hölder’s inequality we get

LHS2 ·
(

a2

a2 + 1
+

b2

b2 + 1
+

c2

c2 + 1

)
≥ (a+ b+ c)3.
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It remains to prove

(a+ b+ c)2 ≥ 4

(
a2

a2 + 1
+

b2

b2 + 1
+

c2

c2 + 1

)
or

(a+ b+ c)2

ab+ bc+ ca
≥ 4

(
a2

(a+ b)(a+ c)
+

b2

(b+ c)(b+ a)
+

c2

(c+ a)(c+ b)

)
or

a2 + b2 + c2

ab+ bc+ ca
+

8abc

(a+ b)(b+ c)(c+ a)
≥ 2

which is well-known (see [3]).

Problem 6.26 (from AoPS). Let x, y, z be reals such that 3x2 + 2y2 + z2 = 6. Let
P = 2(x+ y + z)− xyz. Prove that−6 ≤ P ≤ 6.

Solution (of user IceyCold from AoPS). By Cauchy-Bunyakovsky-Schwarz and AM-
GM

P 2 = [2(x+ y + z)− xyz]2 = [
√
2 ·

√
2(x+ y) + z(2− xy)]2

≤ (z2 + 2)[2(x+ y)2 + (2− xy)2] =
(3x2 + 6)(2y2 + 4)(z2 + 2)

6

≤ (3x2 + 2y2 + z2 + 12)3

6 · 27
= 36

Therefore −6 ≤ P ≤ 6. Pmax = 6 when x = 0, y = 1, z = 2 and Pmin = −6 when
x = 0, y = −1, z = −2.

6.4 Unsolved Algebraic Inequalities

Problem 6.27 (from AoPS). Given a1, a2, . . . , an ∈ R, z1, z2, . . . , zn ∈ C, prove that

|a1z1+a2z2+· · ·+anzn|2 ≤
a21 + a22 + · · ·+ a2n

2

(
|z1|2 + |z2|2 + · · ·+ |zn|2 + |z21 + z22 + · · ·+ z2n|

)
.

Problem 6.28 (from AoPS). Let a, b, c, x, y, z ≥ 0. Prove that(
a2 + x2

) (
b2 + y2

) (
c2 + z2

)
≥ (ayz + bzx+ cxy − xyz)2.

Problem 6.29 (from AoPS). Prove that for reals a, b, c > 0

(1−a)2+(1−b)2+(1−c)2 ≥ c2(1− a2)(1− b2)

(ab+ c)2
+
b2(1− a2)(1− c2)

(ac+ b)2
+
a2(1− b2)(1− c2)

(bc+ a)2
.

Problem 6.30 (of user Nguyenhuyen_AG from AoPS). Let a, b, c and x, y, z be the
lengths of the sides of two triangles. Prove that

[a(y + z − x) + b(z + x− y) + c(x+ y − z)] (abyz + bczx+ caxy) ⩾ 9abcxyz.

Problem 6.31 (from AoPS). For a, b, c > 0 prove that(
a+

1

a

)(
b+

1

b

)(
c+

1

c

)
≥ 4

3

(
a+ b

c
+

b+ c

a
+

c+ a

b

)
.
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Problem 6.32 (of user qiwang from AoPS). For reals a, b, c, d prove

2 (b c d+ a c d+ a b d+ a b c)2

(b+ a) (c+ a) (c+ b) (d+ a) (d+ b) (d+ c)
≥ 1− a3

(b+ a) (c+ a) (d+ a)

− b3

(b+ a) (c+ b) (d+ b)
− c3

(c+ a) (c+ b) (d+ c)
− d3

(d+ a) (d+ b) (d+ c)
.
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7 Algebra and Analysis

7.1 Inequalities

Problem 7.1 (Asian Pacific Mathematical Olympiad 1999, from AoPS). Let a1, a2, . . .
be a sequence of real numbers satisfying ai+j ≤ ai + aj for all i, j = 1, 2, . . . . Prove that

a1 +
a2
2

+
a3
3

+ · · ·+ an
n

≥ an

for each positive integer n.

Solution (of user jgnr from AoPS). We will prove this by induction. Note that the
inequality holds for n = 1. Assume that the inequality holds for n = 1, 2, . . . , k, that is,

a1 ≥ a1, a1 +
a2
2

≥ a2, . . . , a1 +
a2
3

+
a3
3

+ · · ·+ ak
k

≥ ak.

Sum them up:
ka1 + (k − 1)

a2
2
a2 + · · ·+ ak

k
≥ a1 + a2 + · · ·+ ak.

Add a1 + . . .+ ak to both sides:

(k + 1)
(
a1 +

a2
2

+ · · ·+ ak
k

)
≥ (a1 + ak) + (a2 + ak−1) + · · ·+ (ak + a1) ≥ kak+1.

Divide both sides by k + 1:

a1 +
a2
2

+ · · ·+ ak
k

≥ kak+1

k + 1
,

i.e.
a1 +

a2
2

+
a3
3

+ · · ·+ an
n

≥ an.

Problem 7.2 (from AoPS). If a1, a2, . . . , an > 0 for some n ≥ 1, then prove

1

a1
+

2

a1 + a2
+

3

a1 + a2 + a3
+ . . .+

n

a1 + a2 + . . .+ an
< 2

(
1

a1
+

1

a2
+ . . .+

1

an

)
.

Solution (of Nairi Sedrakian from the post of user Erken on AoPS). We have

1

a1
>

1

a1

(
1− 1

22

)
+

1

a1

(
1

22
− 1

32

)
· · ·+ 1

a1

(
1

n2
− 1

(n+ 1)2

)
,

1

a2
>

22

a2

(
1

22
− 1

32

)
+

22

a2

(
1

32
− 1

42

)
· · ·+ 22

a2

(
1

n2
− 1

(n+ 1)2

)
,

. . .

1

an
>

n2

an

(
1

n2
− 1

(n+ 1)2

)
,
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from which we obtain that

RHS >
2

a1

(
1− 1

22

)
+ 2

(
1

a1
+

22

a2

)(
1

22
− 1

32

)
+ . . .

+ 2

(
1

a1
+

22

a2
+ · · ·+ n2

an

)(
1

n2
− 1

(n+ 1)2

)
.

Thus it is enough to prove that for any 1 ≤ k ≤ n

2

(
1

a1
+

22

a2
+ · · ·+ k2

ak

)(
1

k2
− 1

(k + 1)2

)
>

k

a1 + a2 + · · ·+ ak
.

This follows from Cauchy-Bunyakovsky-Schwarz’s inequality

2

(
1

a1
+

22

a2
+ · · ·+ k2

ak

)
(a1 + a2 + · · ·+ ak) ≥

(k(k + 1))2

2
>

k3(k + 1)2

2k + 1
.

Problem 7.3 (Angelo Di Pasquale, from AoPS). Let n ≥ 3 be an integer, and let
a2, a3, . . . , an be positive real numbers such that a2a3 · · · an = 1. Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

Solution (of user potla from AoPS). Note that

(ak + 1) =

(
ak +

1

k − 1
+ · · ·+ 1

k − 1

)
≥ k k

√
ak

(k − 1)k−1
.

Therefore (ak + 1)k ≥ kk

(k−1)k−1ak. Taking the product over all k we get

n∏
k=2

(ak + 1)k ≥ nna2a3 · · · an = nn.

Equality holds iff ak =
1

k−1
for all k, which is not possible.

Problem 7.4 (Tuymaada 1997 p5, from AoPS). For n ∈ N, q > 2 prove the inequality(
1 +

1

q

)(
1 +

1

q2

)
. . .

(
1 +

1

qn

)
<

q − 1

q − 2
.

Solution (of user fungarwai from AoPS). Use the inequality ln

(
1 +

1

x

)
<

1

x
:

∞∑
n=1

ln

(
1 +

1

qn

)
<

∞∑
n=1

1

qn
=

1

q − 1
,

∞∏
n=1

(
1 +

1

qn

)
< exp

(
1

q − 1

)
=

∞∑
n=0

1

n!(q − 1)n
<

∞∑
n=0

1

(q − 1)n
=

q − 1

q − 2
.
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Problem 7.5 (from AoPS). Let m,M, r ∈ N with r ≥ 3 and k0, . . . , kM ∈ Z such that

M∑
i=0

kir
i =

m∑
i=0

ri.

Show that
M∑
i=0

|ki| ≥ m+ 1.

Solution (of user L.M. from AoPS). Obviously k0 ≡ 1 (mod r). Assume that k0 = rq+1
(q may be negative). If q ̸= 0, we replace k0 and k1 with 1 and k1 + q. Observe that
|k0| + |k1| will decrease at least by |q|(r − 1) − 2 which is nonnegative for r ⩾ 3. So we
can assume that k0 = 1. Hence

M∑
i=1

kir
i−1 =

m∑
i=1

ri−1.

By induction on m we are done.

Problem 7.6 (Selected from the Kvant Magazine, Romania TST 2024 Day 1 P2, from
AoPS). Let n ⩾ 2 be a fixed integer. Consider n real numbers a1, a2, . . . , an not all equal
and let

d := max
1⩽i<j⩽n

|ai − aj|; s =
∑

1⩽i<j⩽n

|ai − aj|.

Determine in terms of n the smallest and largest values the quotient s/d may achieve.

Solution (of user EthanWYX2009 from AoPS). Fix M = max ai, m = min ai, now d
is fixed. Since s is linear for all ai, it achieves its boundary values when any ai is either
M or m. Let k of them be m and n− k be M . Then s/d = k(n− k). So obviously the
maximum and minimum value are ⌊n/2⌋ · ⌈n/2⌉ and n− 1.

Problem 7.7 (Sutanay Bhattacharya, India EGMO 2022 TST P1, from AoPS). Let
n ≥ 3 be an integer, and suppose x1, x2, · · · , xn are positive real numbers such that
x1 + x2 + · · ·+ xn = 1. Prove that

x1−x2
1 + x1−x3

2 · · ·+ x1−xn
n−1 + x1−x1

n < 2.

Solution (of Anish Kulkarni from the post of user Rg230403 on AoPS). By Bernoulli’s
inequality

x
1−xi+1

i = (1− (1− xi))
1−xi+1 ≤ 1− (1− xi)(1− xi+1) < xi + xi+1.

Summing cyclically yields the result.

Problem 7.8 (from AoPS). Let n ≥ 3 be positive integer. x1, . . . , xn are reals such that
x2
1 + · · ·+ x2

n = n(n− 1). Determine the maximum value of

F :=
∏

1≤i<j≤n

(xi − xj).
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Solution (of user lbh_qys from AoPS). Answer: 11 · 22 · · ·nn.
Let m = n(n − 1)/2, and introduce the probability theory Hermite polynomial

Hen(x), defined as follows:

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 .

Let its zeros be a1 > a2 > · · · > an, then a21 + a22 + · · ·+ a2n = 2m.
Define F0 =

∏
i<j(ai − aj), and assume x1 ≥ x2 ≥ · · · ≥ xn. Using the AM-GM

inequality, we obtain

F

F0

=
∏
i<j

xi − xj

ai − aj
≤

(∑
i<j

xi−xj

ai−aj

m

)m

.

Using the properties of the Hermite polynomial, we have
∑
j ̸=i

1

ai − aj
=

ai
2

, thus

∑
i<j

xi − xj

ai − aj
=

1

2

n∑
i=1

aixi.

By Cauchy-Bunyakovsky-Schwarz,

n∑
i=1

aixi ≤

(
n∑

i=1

a2i

)1/2( n∑
i=1

x2
i

)1/2

= 2m.

Hence
∑
i<j

xi − xj

ai − aj
≤ m. This implies

F

F0

≤
(m
m

)m
= 1. That is, F ≤ F0. This

indicates that F0 is the maximum value of F . According to the properties of the Hermite
polynomial, its discriminant is D(Hen) = 11 · 22 · · ·nn.

Problem 7.9 (USAMO 2000/6, from AoPS). Let a1, b1, a2, b2, . . . , an, bn be nonnegative
real numbers. Prove that

n∑
i,j=1

min{aiaj, bibj} ≤
n∑

i,j=1

min{aibj, ajbi}.

Solution (of user thevictor from AoPS). In the following,
∫

means integrating dx from
0 to +∞. We define the indicator function f(t, x) = 1[t ≤ x]. It is easy to see that
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∫
f(a, x)f(b, x) =

∫
cf(a/c, x)f(b/c, x) and min{a, b} =

∫
f(a, x)f(b, x). Notice that

∑
1≤i,j≤n

min{aibj, biaj} =
∑

1≤i,j≤n

∫
f(aibj, x)f(biaj, x)

=
∑

1≤i,j≤n

∫
bibjf(ai/bi, x)f(aj/bj, x)

=

∫ ( n∑
i=1

bif(ai/bi, x)

)2

=

∫
1

2

(
n∑

i=1

bif(ai/bi, x)

)2

+
1

2

(
n∑

i=1

aif(bi/ai, x)

)2

≥
∫ ( n∑

i=1

bif(ai/bi, x)

)(
n∑

i=1

aif(bi/ai, x)

)
=

∑
1≤i,j≤n

∫
aibjf(aj/bj, x)f(bi/ai, x)

=
∑

1≤i,j≤n

∫
f(aiaj, x)f(bibj, x)

=
∑

1≤i,j≤n

min{aiaj, bibj}

as needed.

Problem 7.10 (from AoPS). Let z1, z2, . . . , zn be n complex numbers with |zi| ≥ 1 for
all i such that

∑n
j=1 zn = 0. If z ∈ C is such that |z| ≤ 1 then show that

n∑
i=1

|zi − z| ≥ n.

Solution (of user Saucitom from AoPS). The proof relies on the following

Proposition 7.10.1. Let x, y ∈ C such that |x| ≤ 1 ≤ |y|, then

|x− y| ≥ |1− xy|.

Proof.

|x− y| ≥ |1− xy| ⇐⇒ |x|2 + |y|2 − 2ℜ(xy) ≥ 1 + |x|2|y|2 − 2ℜ(xy)
⇐⇒ |y|2(1− |x|2) ≥ 1− |x|2.

Now, with |z| ≤ 1 ≤ |zi|, we have

n∑
i=1

|z − zi| ≥
n∑

i=1

|1− ziz| ≥

∣∣∣∣∣
n∑

i=1

1− ziz

∣∣∣∣∣ = n.
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Remark 7.10.1 (of user Saucitom from AoPS). Inequality is still valid if |z| > 1 as

n∑
i=1

|zi − z| ≥

∣∣∣∣∣
n∑

i=1

zi − z

∣∣∣∣∣ = n|z| > n.

7.2 Fourier Transform

Problem 7.11 (D.J. Newman, AMM, from AoPS). Suppose that a polynomial a0 +
a1x+ · · ·+ anx

n , an ̸= 0 , has all its zeroes in |x| < 1 . Prove that

n∑
k=0

k|ak|2

n∑
k=0

|ak|2
>

n

2
.

Solution (of user Saucitom from AoPS). Denote the zeroes by α1, . . . , αn, then

n∑
k=0

k|ak|2 =
1

2π

∫ π

−π

P (eiθ)P ′(eiθ)eiθ dθ

=
1

2π

∫ π

−π

|P (eiθ)|2P
′(eiθ)

P (eiθ)
eiθ dθ

=
1

2π

n∑
k=1

∫ π

−π

|P (eiθ)|2 eiθ

eiθ − αk

dθ

(integral is real) =
1

2π

n∑
k=1

∫ π

−π

|P (eiθ)|2ℜ
(

eiθ

eiθ − αk

)
dθ

=
1

2π

n∑
k=1

∫ π

−π

|P (eiθ)|2 1−ℜ(e−iθαk)

1 + |αk|2 − 2ℜ(e−iθαk)
dθ.

As |αk| < 1, we note that both numerator and denominator in the above fractions are
positive, whence we have

1−ℜ(e−iθαk)

1 + |αk|2 − 2ℜ(e−iθαk)
>

1−ℜ(e−iθαk)

2− 2ℜ(e−iθαk)
=

1

2
.

Finally,
n∑

k=0

k|ak|2 >
1

2π

∫ π

−π

n

2
|P (eiθ)|2 dθ =

n

2

n∑
k=0

|ak|2.

Remark 7.11.1 (of user loup blanc from AoPS). Note that n/2 is the best bound;
consider xn − u, where |u| < 1.

Problem 7.12 (from AoPS). Let a1, . . . , an be real numbers such that a1 + · · ·+ an = 0
and a21 + · · ·+ a2n = 1. Find the maximum value of a1a2 + a2a3 + · · ·+ ana1.
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Solution (of user Seungjun_Lee from AoPS). Using Discrete Fourier Transform we
will prove that for reals with a1 + a2 + · · ·+ an = 0

cos
2π

n

(
n∑

i=1

a2i

)
≥

n∑
i=1

aiai+1.

Let f(i) = ai for any i ∈ {1, 2, · · · , n}. Let •̃ be the DFT of •. Then, f̃(n) = 0. Also, let
g(x) = f(x+ 1). Then

cos
2π

n

(
n∑

i=1

a2i

)
−

n∑
i=1

aiai+1 = cos
2π

n

n∑
k=1

|f(k)|2 − ⟨f, g⟩

By Parseval’s theorem Fourier transform preserves inner product, i.e. ⟨f, g⟩ = ⟨f̃ , g̃⟩.
Hence, from easy calculation we get

⟨f, g⟩ =
n∑

k=1

cos
2πk

n
|f(k)|2.

Therefore, cos
2π

n

n∑
k=1

|f(k)|2 − ⟨f, g⟩ ≥ 0, and this implies that

cos
2π

n

(
n∑

i=1

a2i

)
≥

n∑
i=1

aiai+1.

7.3 Polynomials

Problem 7.13 (Putnam 2008 A5, from AoPS). Let n ≥ 3 be an integer. Let f(x) and
g(x) be polynomials with real coefficients such that the points (f(1), g(1)), (f(2), g(2)),
. . . , (f(n), g(n)) in R2 are the vertices of a regular n-gon in counterclockwise order. Prove
that at least one of f(x) and g(x) has degree greater than or equal to n− 1.

Solution (of user Sly Si from AoPS). Define P (x) = f(x) + ig(x). P is a polynomial
with complex coefficients. The claim that at least one of f and g has degree at least n−1
is precisely the claim that the degree of P is at least n− 1.

We can translate P (x) without changing its degree so that the polygon is centered
at the origin. Call the new polynomial Q(x). Now if we let z = e

2πi
n then for i =

1, 2, 3, . . . , n− 1 we have Q(i+ 1) = zQ(i).
Now we define a new polynomial R(x) = Q(x+1)− zQ(x). This has degree at most

the degree of Q, and it has n − 1 roots. Therefore the degree of Q is at least n − 1, as
desired.

Problem 7.14 (from AoPS). Let P (x) be a polynomial with the coefficients being 0 or
1 and degree 2023. If P (0) = 1, then prove that every real root of this polynomial is less
than 1−

√
5

2
.
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Solution (of user Tintarn from AoPS). Clearly P has only negative roots. Suppose
that −x is a real root so that 0 < x ≤ φ =

√
5−1
2

. Then

1 + xg1 + · · ·+ xgk = xu1 + · · ·+ xum

for even integers g1 < · · · < gk ≤ 2022 and odd integers u1 < · · · < um = 2023. Proving
that this is impossible is clearly equivalent to showing that RHS < LHS in this equation.
But this is equivalent to

x+ x3 + x5 + · · ·+ x2023 < 1

which is true because the LHS is less than the geometric series x
1−x2 and by asumption

we have x ≤ 1− x2.

Problem 7.15 (from AoPS). Let P (x) be a polynomial with real coefficients of degree
n such that |P (x)| ≤ 1 for all 0 ≤ x ≤ 1. Prove that

|P (−1/n)| ≤ 2n+1 − 1.

Solution (of user Tintarn). Equivalently, |P (x)| ≤ 1 for all 0 ≤ x ≤ n and we want
|P (−1)| ≤ 2n+1 − 1. This follows directly from the formula (classical consequence of
equality of nth finite differences)

n+1∑
k=0

(−1)n−k+1

(
n+ 1

k

)
P (x+ k) = 0

for x = −1, the triangle inequality and the Binomial Theorem.

Problem 7.16 (from AoPS). For z ∈ C, let P (z) be a complex polynomial of degree d.
In other words,

P (z) = a0 + a1z + · · ·+ adz
d,

where a0, . . . , ad ∈ C. Let S = {z ∈ C : |z| = 1}, and suppose that

|P (z)| ≤ 1, ∀z ∈ S.

Then prove that there exists a complex polynomial Q(z) of degree at most d such that

|P (z)|2 + |Q(z)|2 = 1, ∀z ∈ S.

Solution (of user cadaeibf from AoPS). Given a polynomial P (z) = adz
d + · · · + a0

with ad, a0 ̸= 0, we define

P ∗(z) := a0z
d + · · ·+ ad = zdP (1/z).

Note that in our problem we may assume that P (0) ̸= 0 (otherwise we can factor a power
of z which does not change the absolute value if |z| = 1), and similarly we will want
Q(0) ̸= 0.

Now, if |z| = 1 we have z−1 = z, and so

|P (z)|2 = P (z)P (z) = P (z)P (1/z) = z−dP (z)P ∗(z).
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Therefore, we would like to find a polynomial Q(z) = bdz
d + · · ·+ b0 with bd, b0 ̸= 0 such

that the polynomial identity

P (z)P ∗(z) +Q(z)Q∗(z) = zd

is always satisfied. (Note that if any polynomial Q satisfies the equation it must satisfy
the two other conditions.)

Now, we want to find a condition for a polynomial g(z) of degree 2d (with g(0) ̸= 0)
in order for it to be written as g(z) = Q(z)Q∗(z). If such a polynomial Q(z) = bdz

d +

· · ·+ b0 = bd

d∏
j=1

(z − αj) exists, we must have

g(z) = bdbd
∏
j

(−αj)
∏
j

(z − αj)(z − α−1
j ).

Therefore, if g(z) = c2dz
2d + · · · + c0 = c2d

2d∏
k=1

(z − γk), we must have that the multiset

{γk}k=1,...,2d can be written as the union of the multisets {αj}j and {α−1
j }j for some

multiset {αj}j=1,...,d of nonzero complex numbers. Furthermore, the leading coefficient
must satisfy arg(c2d) = arg

(∏
j(−αj)

)
, since arg(bdbd) = 0. Note that it did not matter

if we chose some specific α or its conjugate inverse α−1, since arg(α) = arg(α−1).
In our case, let f(z) = P (z)P ∗(z) and g(z) = zd − f(z). We will check the two

conditions stated above for g. Firstly, we know that g(z)z−d ∈ [0,∞) for all z ∈ S, i.e.
arg(g(z)) = arg(zd) ∀z ∈ S (although g may vanish on S, so we should actually restrict
the identity to where g doesn’t vanish).

Also, we note that since f = f ∗ we must also have g = g∗. Thus, the roots
{γk}k=1,...,2d must satisfy {γk} = {γ−1

k }. We wish to split this set into two parts {αk}
and {α−1

k }. We can have γk = γ−1
k when |γk| = 1, so we can at least divide the roots of

absolute value lower or greater than one. Now, we just need to prove that each root of
absolute value one has even multiplicity. Indeed, let γ be such a root of g with multiplic-
ity t. Using the fact that arg(g(z)) = arg(zd), the two limits of arg(g(z)) when arg(z)
approaches arg(γ) from above or from below must differ by tπ (it suffices to write g as
the product of its linear factors, whose arguments are all continuous at γ except the ones
which vanish at γ, which acquire a phase of π), which implies t is even.

Now, we need to check the second condition on the leading coefficient. Let us actually
check that twice the arguments are the same. On the left hand side we have arg(c22d). On
the right we have

arg(
∏

(−αj)
2) = arg(

∏
γk) = arg(c0/c2d) = arg(c2dc0) = arg(c22d)

where the last equality follows because c0 = c2d. Therefore, either g(z) or −g(z) can be
written as Q(z)Q∗(z) for some Q. If we were in the second case, it would mean there
would be some Q such that |P (z)|2 − |Q(z)|2 = 1 for all z ∈ S, which is a contradiction
unless |P (z)| = 1 ∀z ∈ S, in which case we anyway have Q = 0.

Problem 7.17 (from AoPS). Let n be a positive integer and P (x) be the polynomial
satisfying the following conditions:
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(i) {a0, a1, . . . , an} is a permutation of {0, 1, 2, . . . , n}.

(ii) P (x) has n roots which are all real numbers.

a) Prove that P (0) = 0.

b) Find all such polynomials.

Solution (from the posts of users algorithm1 and GreenKeeper on AoPS). a) Assume
that 0 is not a root. Obviously P (x) has no root larger than 0. According to Vieta’s
formulas none of ai can be 0, contradiction.

b) We can show that n has to be less than 4. According to a), we can write P (x) =

xQ(x) where Q(x) =
n∑

i=1

aix
i and {a1, . . . , an} = {1, 2, . . . , n}. Q(x) has n − 1

negative roots −x1,−x2, . . . ,−xn−1. We have

an−1

(n− 1)an
=

∑n−1
i=1 xi

n− 1
≥ n−1

√√√√n−1∏
i=1

xi = n−1

√
a1
an

so
an−1

(n− 1)
≥ a

1
n−1

1 a
n−2
n−1
n .

Since the right part is larger than 1, we get an−1 = n.

If n ≥ 4 and an ≥ 2 then

a
n−2
n−1
n >

√
2 >

4

3
≥ n

n− 1

which is a contradiction. So when n ≥ 4, an = 1 and

2an−2

(n− 1)(n− 2)an
=

2
∑n−1

i,j=1,i ̸=j xixj

(n− 1)(n− 2)
≥

(n−1)(n−2)
2

√√√√(
n−1∏
i=1

xi)n−2 =
n−1
2

√
a1
an

2an−2

(n− 1)(n− 2)
≥ a

2
n−1

1 ≥ 2
2

n−1 > 1.

But 2 ≤ (n − 2) and an−2 ≤ (n − 1) so
2an−2

(n− 1)(n− 2)
≤ 1. This contradiction

shows that n < 4.

It is not hard to check then that the only solutions are the polynomials x, x2 +
2x, 2x2 + 1, x3 + 3x2 + 2, 2x3 + 3x2 + 1.
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7.4 Lagrange Interpolation

Problem 7.18 (Bulgaria RMM TST 2023 A3, from AoPS). Given is a monic polynomial
f of degree n with real coefficients and integers x0 < x1 < · · · < xn. Prove that there
exists some positive integer k such that |f(xk)| ≥ n!

2n
.

Solution (of user lone_vagabond from AoPS). According to Lagrange’s interpolation
formula

f(x)

(x− x0) (x− x1) · · · (x− xn)
=

n∑
k=0

rk
x− xk

where
rk =

f (xk)∏n
j=0,j ̸=k (xk − xj)

.

For the condition on xi, the inequality |ai − aj| ≥ |i− j| holds. Thus
n∏

j=0,j ̸=k

(xk − xj) ≥
n∏

j=0,j ̸=k

|k − j| = k!(n− k)!.

Thus
|rk| ≤

|f (xk)|
k!(n− k)!

=
|f (xk)|

n!

(
n

k

)
.

Also as f is monic, multiplying both sides of (1) by x and letting x → ∞, we see that
1 =

∑n
k=0 rk and therefore

1 =

∣∣∣∣∣
n∑

k=0

rk

∣∣∣∣∣ ≤
n∑

k=0

|rk| ≤
n∑

k=0

|f (xk)|
n!

(
n

k

)
≤ M

n!

n∑
k=0

(
n

k

)
=

M · 2n

n!

where M denotes max (|f (x0)| , |f (x1)| , . . . , |f (xn)|). Thus, M ≥ n!
2n

, which implies that
|f (xi)| ≥ n!

2n
for some index i.

Problem 7.19 (of user Ani2000, 2016-17 Lotus Olympiad 5.3, from AoPS). For n ≥ 2
let x1, x2, . . . , xn be n distinct real numbers in the interval [−1, 1].Prove that

n∑
i=1

1

ti
≥ 2n−2,

where ti =
∏
j ̸=i

|xj − xi|.

Solution (of user EthanWYX2009 from AoPS). Consider the Chebyshev polynomial
Tn−1(x) such that Tn−1(cos θ) = cos(n− 1)θ. Lagrange gives

Tn−1(x) =
n∑

i=1

(∏
j ̸=i

x− xj

xi − xj

)
Tn−1(xi).

Thus the coefficient of xn−1 in Tn−1(x) is equal to

2n−2 = [xn−1]Tn−1(x) =
n∑

i=1

[xn−1]

(∏
j ̸=i

x− xj

xi − xj

)
Tn−1(xi) =

n∑
i=1

Tn−1(xi)∏
j ̸=i(xi − xj)

.
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Let xi = cos θi so |Tn−1(xi)| = | cos(n− 1)θi| ≤ 1. Then

2n−2 ≤
n∑

i=1

∣∣∣∣∣ Tn−1(xi)∏
j ̸=i(xi − xj)

∣∣∣∣∣ ≤
n∑

i=1

1

ti
.

7.5 Analysis

Problem 7.20 (International Zhautikov Olympiad 2022, Day 2, Problem 6, from AoPS).
Do there exist two bounded sequences a1, a2, . . . and b1, b2, . . . such that for each positive
integers n and m > n at least one of the two inequalities |am−an| > 1/

√
n, and |bm−bn| >

1/
√
n holds?

Solution (of user starchan from AoPS). The answer is negative. Mark points Pi =
(ai, bi) on the plane. Note that the conditions given, up to scaling are equivalent to

having PmPn >
1√

min(m,n)
. This can be better written as 2PmPn >

1√
m

+
1√
n

.

Proceeding by contradiction let Γ be a huge circle containing all the given points Pi. Let

γk be the circle centered around Pk with radius
1

2
√
k
. Note that all the γk are disjoint.

Now each γi has radius at most 1 and thus we may increase the radius of Γ by 2, keeping
the center constant, so that each γk ⊂ Γ. Thus the area of Γ is at least the sum of areas
of the γi. However, the sum of areas of the γi is infinite since they are the sum of a
harmonic series. But Γ has finite area and this is a contradiction.

Problem 7.21 (Holden Mui, 2023 USEMO, from AoPS). Each point in the plane is
labeled with a real number. Show that there exist two distinct points P and Q whose
labels differ by less than the distance from P to Q.

Solution (of user blackbluecar from AoPS). Assume for the sake of contradiction such
a labeling ℓ : R2 → R exists that for all X, Y ∈ R2 holds ℓ(X)− ℓ(Y ) ≥ XY .

Claim: For any interval [a, b], all the points X ∈ R2 obeying ℓ(X) ∈ [a, b] can fit
inside some disk of area π(a− b)2.

Note that if ℓ(X), ℓ(Y ) ∈ [a, b] we must have XY ≤ b − a. So, if we fix some
ℓ(O) ∈ [a, b] then every point lies inside the circle centered at O with radius b− a. Thus,
has area π(a− b)2. □

So, we define the function

H(n) =


1
1
+ 1

2
+ · · ·+ 1

n
for n ≥ 1

0 for n = 0

−H(−n) for n ≤ −1

It is well known that as n gets arbitrarily large, so does H(n). Thus, as n gets arbitrarily
small so does H(n). So, for every X ∈ R2 we have ℓ(X) ∈ [H(n), H(n + 1)] For some
n ∈ Z. By our previous claim, there are some fixed disks . . . , D−1, D0, D1, . . . where Dn

has area π(H(n)−H(n+ 1))2 for all n ∈ Z, and their union contains every point in R2.
But, ∑

k∈Z

π · (H(k + 1)−H(k))2 = 2π
∞∑
k=1

1

k2
=

π3

3
< ∞
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and thus cannot cover the whole plane.

Problem 7.22 (IMO ShortList 2002 A2, from AoPS). Let a1, a2, . . . be an infinite se-
quence of real numbers, for which there exists a real number c with 0 ≤ ai ≤ c for all i,
such that

|ai − aj| ≥
1

i+ j
for all i, j with i ̸= j.

Prove that c ≥ 1.

Solution (of user pi37 from AoPS). Consider a1, a2, · · · an and let b1, b2, · · · bn be this
sequence in sorted order, and suppose bk = aik . Note that

c ≥ bn − b1 =
n−1∑
k=1

|bk+1 − bk| ≥
n−1∑
k=1

1

ik + ik+1

≥ (n− 1)2

i1 + 2i2 + · · ·+ 2in−1 + in

≥ (n− 1)2

1 + 2 + 2(3 + · · ·+ n)
=

(n− 1)2

n2 + n− 3

so as n approaches infinity, we recover c ≥ 1.

Problem 7.23 (Balkan MO ShortList 2010 A2, from AoPS). Let the sequence (an)n∈N,
where N denote the set of natural numbers, is given with a1 = 2 and an+1 = a2n − an+1.
Find the minimum real number L, such that for every k ∈ N

k∑
i=1

1

ai
< L.

Solution (of user GorgonMathDotaV from AoPS). Wow, Nice Problem! I claim that

L = 1. Firstly, We need L to be
∞∑
i=1

1

ai
for obvious reasons. We just need to prove that

∞∑
i=1

1

ai
= 1. Notice that an+1 − 1 = a2n − an = an(an − 1),

∞∑
i=1

(
1

ai − 1
− 1

ai

)
=

∞∑
i=1

1

ai(ai − 1)
=

∞∑
i=1

1

ai+1 − 1
=

∞∑
i=2

1

ai − 1
.

Therefore,
∞∑
i=1

1

ai
=

1

a1 − 1
= 1.

Problem 7.24 (Iberoamerican Interuniversity Mathematics Competition 2020 P6, from
AoPS). For a set A, we define A+A = {a+ b : a, b ∈ A}. Determine whether there exists
a set A of positive integers such that∑

a∈A

1

a
= +∞ and lim

n→+∞

|(A+ A) ∩ {1, 2, . . . , n}|
n

= 0.
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Solution (of user dgrozev and post of user XbenX from AoPS). Such a set A does
exist.

Let εi > 0, i = 1, 2, . . . be any decreasing sequence of real numbers converging to 0.
By A≤n we denote the set of those elements of A less than or equal to n.

We consecutively construct a (rapidly increasing) sequence ni ∈ N and choose the
numbers in A as follows: n1 = 1 and A≤n1 := {1}. Suppose ni−1, i ≥ 2 is already
determined. We choose N big enough such that N > ni−1 and |A≤ni−1

+A≤ni−1
|/N < εi

and add to A the numbers jN, j = 1, 2, . . . ,m where m is large enough such that

m∑
j=1

1

jN
> 1.

Set ni := 2mN . Apparently
∑
a∈A

1

a
diverges. It remains to prove that the density of A+A

inside [n] := {1, . . . , n} for any n ≥ N is less than 3εi.
Indeed, for N ≤ n ≤ 2mN , let k ∈ N be such that (k − 1)N < n ≤ kN and let

S = {N, 2N, . . . , kN}. Then

|(A≤kN + A≤kN) ∩ [n]|
≤ |(S + S) ∩ [n]|+ |(A≤ni−1

+ S) ∩ [n]|+ |(A≤ni−1
+ A≤ni−1

) ∩ [n]|
≤ k + |A≤ni−1

|k + |A≤ni−1
+ A≤ni−1

|.

Now divide the above inequality by (k − 1)N to get the density is less than 3εi.

7.6 Other Problems

Problem 7.25 (ELMO 2019 Problem 2, 2019 ELMO Shortlist A3, from AoPS). Let
m,n ≥ 2 be integers. Carl is given n marked points in the plane and wishes to mark their
centroid. He has no standard compass or straightedge. Instead, he has a device which,
given marked points A and B, marks the m − 1 points that divide segment AB into m
congruent parts (but does not draw the segment).

For which pairs (m,n) can Carl necessarily accomplish his task, regardless of which
n points he is given?

Solution (of user Martin2001 from AoPS). The answer is for all (m,n) such that
rad(2n) | m.

Let the points be x1, x2, . . . , xn on the complex plane. Every time we use the device

we end up with some fraction of the form
∑

aixi

mk
, where

∑
ai = mk. For this to be the

centroid we need all ai to be equal. Therefore m must have every prime factor of n.
Now we show that m is even. Consider the last use of the device when m is odd.

Note that at least one a would be even, contradiction (because if we manage to construct
the centroid then all the ai would be equal and even while there sum will be mk and
odd).

Now we show that this is sufficient. First, list out all the primes dividing n. For
each of these primes note that we can find the centroid of a subset with that number of
points. To do this just calculate the midpoints of disjoint pairs, with one point being
left out. Then we have a new subset with p−1

2
points (the midpoints) plus the one point
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left out. If p−1
2

is a power of 2 then we can continue the previous process on this subset
until we get its centroid, and then we can just use the device on this centroid and the
left out point to get p | m equal segments between them, one of whose endpoints will be
the centroid of the initial subset with p points. If not, continue the process on the set of
p−1
2

points until it reaches some subset with a power of 2 points.
Therefore we can just choose some prime p from the list, then partition the set of

all n points xi into p-element subsets, and find the centroid of all these subsets. Now we
continue this on the new set of n

p
points (centroids) until we run out of primes, where we

have the centroid of all xi.

Problem 7.26 (Silk Road 2024 P4, from AoPS). Let a1, a2, . . . be a strictly increasing
sequence of positive integers, such that for any positive integer n, an is not representable

in the for
n−1∑
i=1

ciai for ci ∈ {0, 1}. For every positive integer m, let f(m) denote the

number of ai that are at most m. Show that for any positive integers m, k, we have that

f(m) ≤ ak +
m

k + 1
.

Solution (of user lbh_qys from AoPS). For each i define Si = a1 + a2 + · · · + ai and
study the following i− 1 distinct sums:

ai + S1, ai + S2, . . . , ai + Si−1.

Since these sums all involve distinct terms from a1, a2, . . . , ai and no element in the
sequence can be expressed as the sum of distinct earlier terms, all these sums represent
numbers not in the sequence. For the same reason, all these sums are distinct for all
distinct i. Indeed, if say ai + Sp = aj + Sq for some i, j, p, q with p < i, q < j, p < q, then

i > j and ai = aj +

q∑
l=p+1

al, contradiction with the problem condition.

Next, we estimate how many such sums ai + Sj with i > j there are.

• For ai ≤ ak, we consider all the sums defined above, so for elements not greater

than ak, there are 0 + 1 + 2 + · · ·+ (k − 1) =
k(k − 1)

2
such sums.

• For ak < ai ≤ m, we consider for each ai only adding to the first k sums Sj, j ≤ k to
produce the size constraint. Thus, for each element, exactly k sums are produced,
and there are f(m)− k such elements ai.

Overall, this produces
k(k − 1)

2
+ k(f(m)− k)

distinct sums.
Now we compare the last number with the total number possible sums. These distinct

sums are all less than or equal to m + Sk. Therefore, the number of distinct sums must
be bounded by the number of positive integers less than or equal to m+ Sk that are not
in the sequence.
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Since there are exactly f(m + Sk) elements of the sequence less than or equal to
m+ Sk, the number of sums less than or equal to m+ Sk that are not in the sequence is
bounded by (m+ Sk)− f(m+ Sk). Hence

k(k − 1)

2
+ k(f(m)− k) ≤ m+ Sk − f(m+ Sk). (2)

Since the function f(m) is non-decreasing, we get f(m+ Sk) ≥ f(m). Furthermore,
since the sequence is strictly increasing and ak is greater than any previous element, we
get ak ≥ ai + k − i for all i ≤ k whence

Sk +
k(k − 1)

2
≤ kak.

Applying these findings to (2) we get

(k + 1)f(m) ≤ kf(m) + f(m+ Sk)

≤ m+ Sk +
k(k + 1)

2
≤ m+ kak + k

≤ m+ (k + 1)ak

or simply f(m) ≤ ak +
m

k + 1
as needed.

7.7 Unsolved Algebra and Analysis

Problem 7.27 (from AoPS). Let ω be the root of the polynomial equation with real
coefficients

zn + an−1z
n−1 + an−2z

n−2 + . . .+ a1z + a0 = 0

where n is a positive integer and a2k ≤ ak for all k = 0, 1, . . . , n − 1. Prove that ℜ(ω) is
less than 7

4
.

Problem 7.28 (from AoPS). Given a polynomial P (x) = x2024+a2023x
2023+ . . .+a1x+1

with real coefficients. It is known that |a1012| < 2 and ak = a2024−k,∀k = 1, 2, . . . , 2012.
Prove that P (x) can’t have 2024 distinct real roots.

Problem 7.29 (from AoPS). Prove that for every positive integer n ≥ 2 the roots
(solutions) over C of the equation 2n−1(zn + 1) = (z + 1)n have the same absolute value.
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8 Linear Algebra
Problem 8.1 (2024 Iberoamerican Interuniversity Mathematics Competition P2, from
AoPS). Let n be a positive integer, and let Mn be the set of invertible matrices with
integer entries and size n× n.

(a) Find the largest possible value of n such that there exists a symmetric matrix
A ∈ Mn satisfying

det(A20 + A24) < 2024.

(b) Prove that for every n there exists a matrix B ∈ Mn such that

det(B20 +B24) < 2024.

Solution (of user AkosS from AoPS). A ∈ Mn is symmetric, so its eigenvalues λi are
real and nonzero and detA is a non-zero integer. Use AM-GM:

det(A20 + A24) = (detA)20 det(A4 + I)

= (detA)20
n∏

j=1

(λ4
j + 1) ≥ (detA)20

n∏
j=1

(2λ2
j) = 2n(detA)22 ≥ 2n.

As 211 > 2024 ≥ 210, 10 ≥ n and the identity matrix is a good example.

8.1 Unsolved Linear Algebra

Problem 8.2 (Ky Fan, AMM, from AoPS). Let A,B be two positive definite Hermitian
matrices of order n , and let C = A+B . For any positive integer p < n , let Ap denote
the principal submatrix of A formed by the first p rows and columns , and let Bp, Cp have
similar meanings . Prove(

detC

detCp

) 1
n−p

≥
(

detA

detAp

) 1
n−p

+

(
detB

detBp

) 1
n−p

.

Problem 8.3 (fof user ylt_chn from AoPS). Let A1, A2, . . . , Ak ∈ Mn(R) are invertible
matrices such that for any different i, j Ai+Aj is singular. Find the maximal possible k.
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9 Analysis

9.1 Measure

Problem 9.1 (Donald Girod, AMM, from AoPS). Let f : [0, 1] → R be a continuous
function with f(0) = f(1) = 0. Show that the Lebesgue measure of {h : f(x + h) =
f(x) for some x ∈ [0, 1]} is at least 1

2
.

Solution (of user Saucitom from AoPS). We need to prove that

A = {h ∈ [0, 1] : ∃x ∈ [0, 1− h], f(x) = f(x+ h)}.

has Lebesgue measure at least 1/2.
Extend f into a 1-periodic function and note that for any h ∈ [0, 1],∫ 1

0

f(x+ h)− f(x) dx = 0.

As f is continuous, the integrand must cancel at some point x ∈ [0, 1]. Hence,

f(x+ h) = f(x).

If x+ h ≤ 1, then h ∈ A. If x+ h > 1, we let y = x− 1 + h so that y, y + 1− h ∈ [0, 1].
Moreover, by 1-periodicity,

f(y) = f(y + 1− h),

so that 1− h ∈ [0, 1]. In particular, if h ∈ A, then 1− h ∈ A. This amounts into saying
that the application

f :

{
A → A

h 7→ 1− h

is injective. As f preserves Lebesgue measure, |A| = |f(A)| ≤ |A|, hence |A| ≥ 1

2
.

9.2 Integral Inequalities

Problem 9.2 (of user ionbursuc from AoPS). Let f(x) be a continuous and convex
function on [0, 2π] Show that ∫ 2π

0

f(x) cosxdx ≥ 0.

Solution (of user WWW from AoPS).

Lemma 9.2.1. If f convex on [0, 2π] then f(x + π)− f(x) is an increasing function on
[0, π].

Proof. If x < y, we want to show f(y + π)− f(x + π)− (f(y)− f(x)) ≥ 0. If we divide
by y−x, we are comparing slopes of secant lines on the graph of f . Because f is convex,
these slopes increase as we move to the right. This gives the result.

Lemma 9.2.2. If g decreases on [0, π], then
∫ π

0

g(x) cosx dx ≥ 0.
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Proof. The integral equals∫ π/2

0

[g(π/2− x) cos(π/2− x) + g(π/2 + x) cos(π/2 + x)] dx.

Now cos(π/2 + x) = − cos(π/2− x), so the last integral equals∫ π/2

0

[g(π/2− x)− g(π/2 + x)] cos(π/2− x) dx.

Because g is decreasing, the last integrand is ≥ 0, giving the lemma.

So now assume we have f continuous and convex on [0, 2π]. Then
∫ 2π

0

f(x) cosx dx =∫ π

0

[f(x)− f(x+π)] cosx dx. Lemma 9.2.1 implies f(x)− f(x+π) is decreasing. Lemma

9.2.2 then finishes the proof.

Problem 9.3 (from AoPS). Let f : [0, 1] → R be a continuous differentiable function

satisfying
∫ 1

0

f(x)dx = 0. Prove that the following inequality holds:

2

∫ 1

0

f(x)2dx ≤
(∫ 1

0

|f(x)|dx
)(∫ 1

0

|f ′(x)|dx
)
.

Solution (of user newuser58165 from AoPS). Note that the following holds:∫ 1

0

f(x)2dx =

∫ 1

0

f(x)

[∫ x

0

f ′(t)dt+ f(0)

]
dx

=

∫ 1

0

∫ x

0

f(x)f ′(t)dtdx+ f(0)

∫ 1

0

f(x)dx

=

∫ 1

0

∫ x

0

f(x)f ′(t)dtdx

⩽
∫ 1

0

∫ x

0

|f(x)f ′(t)|dtdx

∫ 1

0

f(x)2dx =

∫ 1

0

f(x)

[
−
∫ 1

x

f ′(t)dt+ f(1)

]
dx

= −
∫ 1

0

∫ 1

x

f(x)f ′(t)dtdx+ f(1)

∫ 1

0

f(x)dx

= −
∫ 1

0

∫ 1

x

f(x)f ′(t)dtdx

⩽
∫ 1

0

∫ 1

x

|f(x)f ′(t)|dtdx

By summing these, the following holds:

2

∫ 1

0

f(x)2dx ⩽
∫ 1

0

∫ 1

0

|f(x)f ′(t)|dtdx =

∫ 1

0

|f(x)|dx
∫ 1

0

|f ′(x)|dx.
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Problem 9.4 (from AoPS). Let f : R → R a differentiable function such that f(0) = 0
and 0 < f ′(t) ≤ 1 for all t ∈ [0, 1]. Show that:(∫ 1

0

f(t)dt

)2

≥
∫ 1

0

f(t)3dt.

Solution (of user naenaendr from AoPS). The key is to define a new function as follows:

G(x) =

(∫ x

0

f(t)dt

)2

−
∫ x

0

f(t)3dt.

Since G(0) = 0, it suffices to show that G is increasing.
For G to be increasing, we require

G′(x) = 2f(x)

∫ x

0

f(t) dt− f(x)3 = f(x)

(
2

∫ x

0

f(t) dt− f(x)2
)

≥ 0

for x ∈ [0, 1].

Since f(x) > 0 for all x ∈ (0, 1], all we need to show is that H(x) = 2

∫ x

0

f(t) dt −

f(x)2 ≥ 0 on [0, 1]. Notice that H ′(x) = 2f(x) − 2f(x)f ′(x) = 2f(x)(1 − f ′(x)). We
know that this is ≥ 0 given 0 < f ′(t) ≤ 1 for all t ∈ [0, 1]. So we are done.

Problem 9.5 (from AoPS). If f (x) is a continuous real function and∫ 1

0

f (x)dx =

∫ 1

0

xf (x)dx = · · · =
∫ 1

0

xn−1f (x)dx = 1,

prove
∫ 1

0

f 2 (x)dx ⩾ n2.

Solution (of user ysharifi from AoPS). We will solve the problem by using properties
of Hilbert matrices.

An n× n Hilbert matrix is defined by Hn = [aij], where

aij =
1

i+ j − 1

for all 1 ≤ i, j ≤ n. It is known that Hn is invertible and if H−1
n = [bij], then

∑
i,j

bij = n2.

Since Hn is invertible, there exist real numbers p0, · · · , pn−1 such that

n∑
i=1

pi−1

i+ j − 1
= 1

for all 1 ≤ j ≤ n. So the polynomial p(x) =
n−1∑
k=0

pkx
k satisfies the conditions

∫ 1

0

p(x) dx =

∫ 1

0

xp(x) dx = · · · =
∫ 1

0

xn−1p(x) dx = 1.
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Clearly
n−1∑
k=0

pk is the sum of all the entries of H−1
n and so

n−1∑
k=0

pk = n2. Now let f be a

real-valued continuous function on [0, 1] such that∫ 1

0

f(x) dx =

∫ 1

0

xf(x) dx = · · · =
∫ 1

0

xn−1f(x) dx = 1

and let p(x) be the above polynomial.Then since

(f(x))2 − 2f(x)p(x) + (p(x))2 = (f(x)− p(x))2 ≥ 0,

integrating gives∫ 1

0

(f(x))2dx ≥ 2

∫ 1

0

f(x)p(x) dx−
∫ 1

0

(p(x))2dx = 2
n−1∑
k=0

pk

∫ 1

0

xkf(x) dx−

n−1∑
k=0

pk

∫ 1

0

xkp(x) dx = 2
n−1∑
k=0

pk −
n−1∑
k=0

pk =
n−1∑
k=0

pk = n2.

9.3 Functional Analysis

Problem 9.6 (of user Dattier from AoPS). Let (fn)n∈N ∈ C([0, 1])N with

1 ̸∈ span{fn | n ∈ N}.

Does there exist a real vector space V dense in C([0, 1]) so that

V ∩ span{fn | n ∈ N} = {0}?

Solution (of user Phorphyrion from AoPS). Let U = span{fn | n ∈ N}. We will take
V to be one of Vt = span{1, etx, e2tx, . . . } for some t ∈ R. By the Stone-Weierstrass
theorem Vt is a dense subspace for any t ̸= 0.

Suppose FTSOC that Vt ∩U ̸= {0} for each t ̸= 0. Let S be a set of representatives
for R∗/Q∗. Note that nt ̸= ms for each t ̸= s ∈ S and m,n ∈ Z \ {0}.

For each t ∈ S pick a nonzero vector vt ∈ Vt∩U . Because U is of countable dimension
we must have some linear dependence among the vt; there are constants ct, almost all 0
but not all 0, so that ∑

t

ctvt = 0

However, as the functions etx are linearly independent, we must have vt constant for each
t, which is a contradiction as 1 /∈ U .
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9.4 Other Problems

Problem 9.7 (of user Dattier from AoPS). Let N ∈ N∗ and f ∈ C([−1, 1]) be a
non-constant function. Is it true that ∃x ∈ R

N∑
k=0

(
N

k

)
(−1)kf(sin(x+ k)) = 0?

Solution (of user calculon from AoPS). Consider the function

g(t) :=
N∑
k=0

(
N

k

)
(−1)kf(sin(t+ k)).

We have∫ π

−π

g(t) dt =
N∑
k=0

(
N

k

)
(−1)k

∫ π+k

−π+k

f(sin(t)) dt = λ

N∑
k=0

(
N

k

)
(−1)k = 0,

where
λ =

∫ π

−π

f(sin(t)) dt.

This is owing to the fact that f(sin(t)) is 2π-periodic so
∫ π

−π

f(sin(t)) dt =

∫ π

−π

f(sin(t+

k)) dt for every k. Thus there exists x such that g(x) = 0.

Problem 9.8 (from the video of user Michael Penn on YouTube). Let f : R → R.
Then, as long as the following integrals converge, they are equal:∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
f

(
x− 1

x

)
dx.

Solution (from the same source). We have∫ ∞

−∞
f

(
x− 1

x

)
dx =

∫ 0

−∞
f

(
x− 1

x

)
dx+

∫ ∞

0

f

(
x− 1

x

)
dx

= lim
t→−∞
a→0−

∫ a

t

f

(
x− 1

x

)
dx+ lim

s→∞
b→0+

∫ s

b

f

(
x− 1

x

)
dx.

Substitute u = −1/x, whence x = −1/u and dx = (1/u2)du. The sum becomes

lim
t→−∞
a→0−

∫ −1/a

−1/t

f

(
u− 1

u

)
1

u2
du+ lim

s→∞
b→0+

∫ −1/s

−1/b

f

(
u− 1

u

)
1

u2
du

=

∫ ∞

0

f

(
x− 1

x

)
1

x2
dx+

∫ 0

−∞
f

(
x− 1

x

)
1

x2
dx

=

∫ ∞

−∞
f

(
x− 1

x

)
1

x2
dx.
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Hence,

2

∫ ∞

−∞
f

(
x− 1

x

)
dx =

∫ ∞

−∞
f

(
x− 1

x

)
dx+

∫ ∞

−∞
f

(
x− 1

x

)
1

x2
dx

=

∫ ∞

−∞
f

(
x− 1

x

)(
1 +

1

x2

)
dx

=

∫ 0

−∞
f

(
x− 1

x

)(
1 +

1

x2

)
dx+

∫ ∞

0

f

(
x− 1

x

)(
1 +

1

x2

)
dx.

Now notice that 1+
1

x2
= d

(
x− 1

x

)
. Thus, after using the argument with limit as above

and substituting u = x− 1

x
in each of the last two integrals we see that each of them is

equal to
∫ ∞

∞
f(u)du which finishes the proof.

Problem 9.9 (G. Halasz, Miklos Schweitzer 1976, from AoPS). Let Sν =
n∑

j=1

bjz
ν
j (ν =

0,±1,±2, . . .), where the bj are arbitrary and the zj are nonzero complex numbers. Prove
that

|S0| ≤ n max
0<|ν|≤n

|Sν |.

Solution (of user oty from AoPS). Let
n∏

j=1

(z − zj) =
n∑

k=0

akz
k and max

0≥k≥n
|ak| = |am|.

Obviously, |am| ≥ 1. Then

n∑
k=0

akSk−m =
n∑

k=0

n∑
j=1

akbjz
k−m
j =

n∑
j=1

bjz
−m
j

n∑
k=0

akz
k
j = 0.

Now we express S0 in terms of the other Sν Note that when k = m,Sk−m = S0. Thus

0 =
n∑

k=0

akSk−m = amS0 +
n∑

k=0,k ̸=m

akSk−m ⇐⇒ S0 = −
n∑

k=0,k ̸=m

ak
am

Sk−m

Hence

|S0| =

∣∣∣∣∣
n∑

k=0;k ̸=m

ak
am

Sk−m

∣∣∣∣∣ ≤
n∑

k=0;k ̸=m

|Sk−m| ≤ n max
0<|ν|≤n

|Sν |.

Remark 9.9.1 (of user oty from AoPS). One can show that equality holds iff b1 = b2 =

· · · = bn and the set of numbers zk is the same as
{
a · exp

(
2πi

(n+ 1)j

) ∣∣∣ j = 1, 2, . . . , n

}
,

where a is an arbitrary constant of absolute value 1.
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Problem 9.10 (of user Dattier from AoPS). Let u, v, w, g, f ∈ C(R+,R∗
+) with v, w

increasing, f, g, u ∈ C1(R+) and ∀x ∈ R+

u(x) = f(x)× v(x) + g(x)× w(x).

Show that ∀x ∈ R+

u′(x)

u(x)
≥ min

(
g′(x)

g(x)
,
f ′(x)

f(x)

)
.

Solution (of user solyaris from AoPS). For x ≥ t we have F (x) := u(x) − f(x)v(t) −
g(x)w(t) ≥ 0, and thus F ′(t) ≥ 0. This gives u′(x) ≥ f ′(x)v(x) + g′(x)w(x) and thus

u′(x)

u(x)
≥ f ′(x)v(x) + g′(x)w(x)

f(x)v(x) + g(x)w(x)

for all x > 0. So it suffices to check that for all a, b, c, d > 0 we have
a+ b

c+ d
≥ min

{
a

c
,
b

d

}
,

which is easy to see.

Problem 9.11 (from AoPS). Let f, g, h ∈ C([a, b]) be differentiable on (a, b). Is it true
that then ∃ξ ∈ (a, b) such that

(f(b)− f(a)) : (g(b)− g(a)) : (h(b)− h(a)) = f ′(ξ) : g′(ξ) : h′(ξ)?

Solution (of user greenturtle3141 from AoPS, coinciding with the original solution of
Anton Igorevich Korchagin from the 2019 fall analysis class at MIPT). No, let us take
the "coil"

(f, g, h) = (cos x, sinx, x)

for x ∈ [0, 2π]. Then the LHS (difference between start and end) is (0, 0, 2π), which is
(0, 0, 1) up to ratios. For the RHS we compute

(f, g, h)′ = (− sinx, cosx, 1),

which is never parallel to (0, 0, 2π) because the first two components cannot simultane-
ously be zero.

9.5 Unsolved Analysis

Problem 9.12 (from AoPS). Consider an exponential polynomial a(z) =
m∑
i=1

Ai(z)e
βiz

where Ai ∈ C[z] and βi ∈ C. Let Γ be the perimeter of the convex hull of the set
{β1, . . . , βm} of frequencies of a(z). Show that the number of zeros of a(z) in the annulus
|z| < R is, as R → ∞,

ΓR

2π
+O(1).

In particular, every generalized power sum that is not of the shape ceβz has infinitely
many zeros.
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Problem 9.13 (of user Sunjee from AoPS). f is differentiable positive function and
a ≤ c ≤ b then

(b− c) exp

 b∫
c

ln f(x)dx

+ (c− a) exp

 c∫
a

ln f(x)dx



≥ (b− a) exp

 b∫
a

ln f(x)dx


Problem 9.14 (from AoPS). Let E be a set of points in the plane with the property
that every closed disk of radius 1 includes at least one element of E. Prove that there
exists a straight line L such that the orthogonal projection of E onto L is everywhere
dense on L.

Problem 9.15 (from AoPS). Let f : C −→ C be analytic in the unit disc. Prove that
there exists a sequence {an} in the unit disc such that limn→∞ |an| = 1 and {f(an)} is a
bounded sequence.

Problem 9.16 (M. Laczkovich, Miklós Schweitzer 1988, from AoPS). Let H ⊂ R be a
bounded, measurable set of positive Lebesgue measure. Prove that

lim inf
t→0

λ((H + t) \H)

|t|
> 0,

where H + t = {x+ t : x ∈ H} and λ is the Lebesgue measure.
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10 Probability, Statistics and Stochastic Processes
Problem 10.1. (a) (from StackExchange) What is the maximum possible value of

min{P(X > Y ),P(Y > Z),P(Z > X)},

where X, Y and Z are random variables?

(b) (from AoPS) What is the maximum possible value of

min{P(X > Y ),P(Y > Z),P(Z > X)},

where X, Y and Z are independent random variables?

Solution. (a) (from the posts of users mathmd and peterwhy on StackExchange)
Answer: 2

3
. The bound follows from

P(X > Y ) + P(Y > Z) + P(Z > X)

= P(X > Y > Z) + P(X > Y ≤ Z) + P(Y > Z > X) + P(Y > Z ≤ X)

+ P(Z > X > Y ) + P(Z > X ≤ Y )

≤ 1 + P(X > Y > Z) + P(Y > Z > X) + P(Z > X > Y )

≤ 4− (P(X > Y ) + P(Y > Z) + P(Z > X)).

As an example, consider if there are three equiprobable cases i, ii, iii:

Case i: Z = 0; Y = 1; X = 2
Case ii: Y = 1; X = 2; Z = 3
Case iii: X = 2; Z = 3; Y = 4

Then P(X > Y ) = P(Y > Z) = P(Z > X) = 2
3
.

(b) (from the posts of users jmerry and fedja on AoPS)

Answer:
√
5−1
2

=: t. For attainability construct the following example:

X ≡ 0, P(Y = −1) = t, P(Y = 2) = 1− t,

P(Z = 1) = t, P(Z = −2) = 1− t.

Then clearly P(X > Y ) = P(Z > X) = t and P(Y > Z) = 1−t+t(1−t) = 1−t2 = t.

It remains to prove the bound. This will be done in three steps.

1. It suffices to consider random variables taking just 2 different values.

2. If X takes values x1 > x2 with probabilities 1−p and p and similarly for Y and
Z (using letters q and r respectively), then the worst possible ordering (up to
cyclic rearrangements of X, Y, Z) of the values is x1 > y1 > z1 > x2 > y2 > z2.

3. For this ordering, the three probabilities are given by 1− p(1− q), 1− q(1− r)
and p(1− r). It is impossible to have all three numbers strictly greater than t.

Here are the implementations of the steps.
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1. First of all, we may assume that X, Y and Z take finitely many values. Indeed,
choose a large integer n and replace X by X̃ that equals −n if X < −n, k

n
if

k
n
≤ X < k+1

n
, k = −n2, . . . , n2 − 1 and n if X ≥ n and similarly for Y and Z.

It is not hard to check that P(X̃ > Ỹ ) tends to P(X > Y ) as n → ∞.
Now let x1 > x2 > · · · > xm be the set of values taken by the random variable
X and let p1, . . . , pm > 0 be the corresponding probabilities. If m > 2, we
shall change the probabilities pj in such a way that one of them becomes 0
and the probabilities P(X > Y ), P(Y > Z), P(Z > X) do not decrease.
Note that, due to independence of X and Y , P(X > Y ) =

∑
j pj P(Y < xj)

and similarly for Z. Thus our problem becomes to change pj such that the
linear form

∑
j pj remains 1 and two other fixed linear forms of pj do not

decrease.
If m > 3, we can even move pj so that all three linear forms stay the same (we
have more variables than equations so the set of solutions forms a non-trivial
linear subspace in Rm).
If m = 3, we can no longer fix all three linear forms, but we still can choose
the non-trivial increments ∆pj so that

∑
j ∆pj = 0 (this gives us a plane in

R3) and two other forms are non-negative (this gives us an intersection of two
half-planes on our plane and the intersection of any 2 half-planes contains a
non-zero vector (provided that their boundaries contain the origin, which is
the case in our situation)).
So, we can reduce the number of different values of X to 2.
Now the same can be done for Y and, finally, for Z.

2. Consider now some possible ordering of x1, . . . , z2. If in this ordering we have
some x immediately followed by some z, we can exchange them, increasing the
probability that Z > X and keeping two other probabilities unchanged. So,
we may assume that z never follows x. Similarly x never follows y and y never
follows z.
Due to cyclic simmetry, we may assume that the largest value is x1. It cannot
be followed by z1. Also, it cannot be followed by x2 (otherwise Z < X with
probability 1). Therefore, the next element in our ordering must be y1.
Reasoning this way again and again, we see that only 2 orderings are possible:
x1 > y1 > z1 > x2 > y2 > z2 and x1 > y1 > z1 > z2 > x2 > y2. But in
the second case we may replace z1 and z2 by a common value z attained with
probability 1 and add a dummy value z′ > x1 that is taken with probability 0,
thus reducing the second case to a partial case of (a cyclic rearrangement of)
the first case.

3. Suppose that all three probabilities are greater than t. Then, since p(1−r) > t,
we must have p > t and 1− r > t

p
. Since 1− q(1− r) > t and 1− t2 = t, we

conclude that q < pt. But then p(1−q) > p(1−pt) ≥ t2 because p 7→ p(1−pt)
is a concave function of p and it takes the value t2 at p = t and at p = 1. Thus,
the first probability does not exceed 1− t2 = t — contradiction.

Problem 10.2 (from StackExchange). There is a programming meme called Stalin sort
which works as follows: the algorithm proceeds from left to right and each time it en-
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counters a value ai less than the previous one ai−1 the element ai is removed from the
sequence.

Given a positive integer n what is the expected length of the Stalin-sorted permuta-
tion of the sequence 1, . . . , n (we treat all these permutations as equally probable).

Solution (of user Rafi from StackExchange). Given n and k ∈ [n], denote by Rk the
event that the kth entry of a permutation σ : [n] → [n] chosen uniformly at random
is retained by this sort. Then it follows from linearity of expectation that the desired
expected length is

E

∑
k∈[n]

1Rk

 =
∑
k∈[n]

E(1Rk
) =

∑
k∈[n]

P(Rk) =
∑
k∈[n]

(k − 1)!

k!
=
∑
k∈[n]

1

k

which is the nth partial sum of Harmonic series.

Problem 10.3 (from StackExchange). Let X and Y be two random variables that satisfy
E[X2] + E[Y 2] < ∞. Prove that

E[
√
X2 + Y 2] ≥

√
(E[X])2 + (E[Y ])2.

Solution (of user Mike Earnest from StackExchange). By Cauchy-Bunyakovsky-Schwarz

(EX)2 + (EY )2 = E[X · EX + Y · EY ]

≤ E
[√

X2 + Y 2 ·
√

(EX)2 + (EY )2
]

= E[
√
X2 + Y 2] ·

√
(EX)2 + (EY )2.

Problem 10.4 (problem 4.7 from [7]). Let (Wt, t ≥ 0) be a Wiener process. Let the
sequence {tn, n ∈ N} of positive reals satisfy

∑∞
n=1 t

1/2
n < ∞. Prove that then |Wtn| →

+∞ a.s. when n → ∞.

Solution (of teacher from the class). We have

|Wtn| →
n→∞

∞ a.s. ⇐⇒ 1

|Wtn |
→

n→∞
0 a.s.

⇐⇒ P
(
lim sup
n→∞

1

|Wtn|
> 0

)
= 0

⇐⇒ P
(
lim sup
n→∞

1

|Wtn|
> ε

)
= 0 ∀ε > 0.

We have Wt/
√
t ∼ N (0, 1) so for its PDF f we have f(0) = 1

2π
e−0 < 1

2
. Hence for a fixed

ε > 0

P
(

1

|Wtn|
> ε

)
= P

(∣∣∣∣Wtn√
t

∣∣∣∣ < 1

ε
√
t

)
=

1
ε
√
t∫

− 1
ε
√

t

f(t)dt <

1
ε
√
t∫

− 1
ε
√
t

1

2
dt =

1

ε
√
t
.
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Define An :=

{
1

|Wtn|
> ε

}
. Then

∞∑
n=1

P(An) ≤
∞∑
n=1

1

ε
√
tn

< ∞.

Therefore by Borel-Cantelli P
(
lim sup
n→∞

An

)
= 0 as desired.
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11 Appendix

11.1 Algebraic identities

For real numbers hold the following identities:

1. (from the posts of users Pain rinnegan and spanferkel on AoPS)

(a2 + b2)(b2 + c2)(c2 + a2) = (ab2 + bc2 + ca2 − abc)2 + (a2b+ b2c+ c2a− abc)2,

(a2 + b2)(b2 + c2)(c2 + d2)(d2 + a2) =
(
(ac+ bd)2 − ac(b− d)2 − bd(a− c)2

)2
+
(
(ac− bd)(a− c)(b− d)

)2
,

(a2 + b2)(b2 + c2)(c2 + d2)(d2 + e2)(e2 + a2) =
(∑

acd(ad+ bc− ab)− abcde
)2

+
(∑

abd(ad+ bc− dc)− abcde
)2

,

2. (from the post of user brokendiamond on AoPS)

(1 + a2)(1 + b2)(1 + c2) = (ab+ bc+ ca− 1)2 + (a+ b+ c− abc)2,

3. (from the post of user DerJan on AoPS)

x3y + y3z + z3x = (x2y + y2z + z2x+ xyz)(x+ y + z)− (xy + yz + zx)2,

4. (from the post of user Rishabh_Ranjan on AoPS)

(a+ b+ c)2 + (−a+ b+ c)2 + (a− b+ c)2 + (a+ b− c)2 = (2a)2 + (2b)2 + (2c)2,

5. xyz(x3 + y3 + z3)− x3y3 + y3z3 + z3x3 = (x2 − yz)(y2 − zx)(z2 − xy),

6. (Lagrange’s identity)(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)
−

(
n∑

k=1

akbk

)2

=
n−1∑
i=1

n∑
j=i+1

(aibj − ajbi)
2

=
1

2

n∑
i=1

n∑
j=1,j ̸=i

(aibj − ajbi)
2,

(for n = 4 from the post of user Phelpedo on AoPS)

(a2 + b2 + c2 + d2)(x2 + y2 + w2 + z2)− (ax+ by + cw + dz)2

= (ay − bx+ cz − dw)2 + (aw − bz − cx+ dy)2 + (az − dx+ bw − cy)2,

7. (from the post of user KhuongTrang on AoPS) Consider the following:

(a) ab+ ac+ bc+ abc = 4,

(b)
1

a+ 2
+

1

b+ 2
+

1

c+ 2
= 1,

(c)
ab+ ac+ 1

a+ 2
+

ab+ bc+ 1

b+ 2
+

cb+ ac+ 1

c+ 2
= 3,

then (a) ⇐⇒ (b) =⇒ (c).
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